0000000000115594

AUTHOR

Stefano Panzeri

0000-0003-1700-8909

showing 4 related works from this author

A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information

2013

Delis, Ioannis | Berret, Bastien | Pozzo, Thierry | Panzeri, Stefano; International audience; ''Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of the trial-to-trial relationships between the synergy activations. Here we develop an analytical methodology to address the nature and functional role of trial-to-trial correlations between synergy activation…

Fine-tuningComputer scienceInformation TheoryNeuroscience (miscellaneous)COMMUNICATIONInformation theorylcsh:RC321-571NATURAL MOTOR BEHAVIORSTask (project management)MOVEMENT03 medical and health sciencesCellular and Molecular Neurosciencetask decoding0302 clinical medicinecorrelationsmuscle synergiesMATRIX FACTORIZATIONMotor systemSimilarity (psychology)NOISE CORRELATIONSOriginal Research ArticleSet (psychology)lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologysingle-trial analysis0303 health sciencesINDEPENDENCEbusiness.industry[SCCO.NEUR]Cognitive science/NeuroscienceMATHEMATICAL-THEORYSIGNAL (programming language)CORTICAL-NEURONSINDEPENDENCE''Pattern recognitionNEURAL POPULATION[ SCCO.NEUR ] Cognitive science/Neuroscience''NATURAL MOTOR BEHAVIORSArtificial intelligenceNoise (video)SPINAL-CORDbusiness030217 neurology & neurosurgeryNeuroscience
researchProduct

Quantitative evaluation of muscle synergy models: a single-trial task decoding approach.

2012

Delis, Ioannis | Berret, Bastien | Pozzo, Thierry | Panzeri, Stefano; International audience; ''Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements . Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies en codes task discriminating…

Computer scienceNeuroscience (miscellaneous)ORGANIZATIONMachine learningcomputer.software_genrelcsh:RC321-571Matrix decompositionNATURAL MOTOR BEHAVIORSFORCE03 medical and health sciencesCellular and Molecular NeurosciencePRIMITIVES0302 clinical medicinetask decodingmuscle synergiesMODULAR CONTROLMATRIX FACTORIZATIONOriginal Research ArticleMuscle activityInvariant (mathematics)Muscle synergylcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biologyARM MOVEMENTS0303 health sciencessingle-trial analysisarm movementbusiness.industryDimensionality reduction[SCCO.NEUR]Cognitive science/NeurosciencereachingTIME-VARYING SYNERGIES[ SCCO.NEUR ] Cognitive science/NeurosciencePATTERNS''NATURAL MOTOR BEHAVIORSArtificial intelligenceFORCE''Single trialSPINAL-CORDbusinesscomputer030217 neurology & neurosurgeryDecoding methodsNeuroscienceFrontiers in computational neuroscience
researchProduct

Deciphering the functional role of spatial and temporal muscle synergies in whole-body movements

2018

AbstractVoluntary movement is hypothesized to rely on a limited number of muscle synergies, the recruitment of which translates task goals into effective muscle activity. In this study, we investigated how to analytically characterize the functional role of different types of muscle synergies in task performance. To this end, we recorded a comprehensive dataset of muscle activity during a variety of whole-body pointing movements. We decomposed the electromyographic (EMG) signals using a space-by-time modularity model which encompasses the main types of synergies. We then used a task decoding and information theoretic analysis to probe the role of each synergy by mapping it to specific task …

0301 basic medicineFunctional roleAdultMalespinal-cordComputer scienceMovementequilibrium-point hypothesislcsh:Medicineemg patternsarm movementsTemporal muscleArticleinterindividual variabilityprimitives03 medical and health sciences0302 clinical medicineSpatio-Temporal Analysismedicinemotor controlHumansMuscle activityMuscle Skeletalactivation patternslcsh:ScienceMultidisciplinarybusiness.industryElectromyographylcsh:RMotor controlPattern recognitionSpinal cord030104 developmental biologymedicine.anatomical_structureFemale[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]lcsh:QArtificial intelligenceWhole bodybusinesssensorimotor control030217 neurology & neurosurgeryinformation measuresScientific Reports
researchProduct

26th Annual Computational Neuroscience Meeting (CNS*2017): Part 2

2017

International audience; No abstract available

0301 basic medicineCerebellumComputer science[SDV]Life Sciences [q-bio]General Neurosciencelcsh:QP351-495Meeting Abstractslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neurosciencelcsh:Neurophysiology and neuropsychology030104 developmental biologymedicine.anatomical_structuremedicineNeuronlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryNeuroscienceComputingMilieux_MISCELLANEOUScomputational neuroscienceBMC Neuroscience
researchProduct