Metal- and Reagent-Free Anodic C−C Cross-Coupling of Phenols with Benzofurans leading to a Furan Metathesis
Heterobiaryls consisting of a phenol and a benzofuran motif are of significant importance for pharmaceutical applications. An attractive sustainable, metal- and reagent-free, electrosynthetic, and highly efficient method, that allows access to (2-hydroxyphenyl)benzofurans is presented. Upon the electrochemical dehydrogenative C-C cross-coupling reaction, a metathesis of the benzo moiety at the benzofuran occurs. This gives rise to a substitution pattern at the hydroxyphenyl moiety which would not be compatible by a direct coupling process. The single-step protocol is easy to conduct in an undivided electrolysis cell, therefore scalable, and inherently safe.
Electrochemical C−H Functionalization of (Hetero)Arenes—Optimized by DoE
Abstract A novel approach towards the activation of different arenes and purines including caffeine and theophylline is presented. The simple, safe and scalable electrochemical synthesis of 1,1,1,3,3,3‐hexafluoroisopropanol (HFIP) aryl ethers was conducted using an easy electrolysis setup with boron‐doped diamond (BDD) electrodes. Good yields up to 59 % were achieved. Triethylamine was used as a base as it forms a highly conductive media with HFIP, making additional supporting electrolytes superfluous. The synthesis was optimized using Design of Experiment (DoE) techniques giving a detailed insight to the significance of the reaction parameters. The mechanism was investigated by cyclic volt…
Front Cover: Electrosynthetic Screening and Modern Optimization Strategies for Electrosynthesis of Highly Value‐added Products (ChemElectroChem 14/2021)
Electrosynthesis 2.0 in 1,1,1,3,3,3-hexafluoroisopropanol/amine mixtures
Synthesis of Highly Functionalized N , N ‐Diarylamides by an Anodic C, N ‐Coupling Reaction
We report an innovative, sustainable and straightforward protocol for the synthesis of N,N-diarylamides equipped with nonprotected hydroxyl groups by using electrosynthesis. The concept allows the application of various substrates furnishing diarylamides with yields up to 57 % within a single and direct electrolytic protocol. The method is thereby easy to conduct in an undivided cell with constant current conditions offering a versatile and short-cut alternative to conventional pathways.
Electrosynthetic screening and modern optimization strategies for electrosynthesis of highly value-added products
CCDC 1589070: Experimental Crystal Structure Determination
Related Article: Sebastian Lips, Bernardo Antonio Frontana‐Uribe, Maurice Dörr, Dieter Schollmeyer, Robert Franke, Siegfried R. Waldvogel|2018|Chem.-Eur.J.|24|6057|doi:10.1002/chem.201800919
CCDC 1988067: Experimental Crystal Structure Determination
Related Article: Maurice Dörr, Johannes L. Röckl, Jonas Rein, Dieter Schollmeyer, Siegfried R. Waldvogel|2020|Chem.-Eur.J.|26|10195|doi:10.1002/chem.202001171
CCDC 1896228: Experimental Crystal Structure Determination
Related Article: Maurice Dörr, Sebastian Lips, Carlos Alberto Martínez‐Huitle, Dieter Schollmeyer, Robert Franke, Siegfried R. Waldvogel|2019|Chem.-Eur.J.|25|7835|doi:10.1002/chem.201901442
CCDC 1589072: Experimental Crystal Structure Determination
Related Article: Sebastian Lips, Bernardo Antonio Frontana‐Uribe, Maurice Dörr, Dieter Schollmeyer, Robert Franke, Siegfried R. Waldvogel|2018|Chem.-Eur.J.|24|6057|doi:10.1002/chem.201800919
CCDC 1589071: Experimental Crystal Structure Determination
Related Article: Sebastian Lips, Bernardo Antonio Frontana‐Uribe, Maurice Dörr, Dieter Schollmeyer, Robert Franke, Siegfried R. Waldvogel|2018|Chem.-Eur.J.|24|6057|doi:10.1002/chem.201800919