Exploring Bioequivalence of Dexketoprofen Trometamol Drug Products with the Gastrointestinal Simulator (GIS) and Precipitation Pathways Analyses
The present work aimed to explain the differences in oral performance in fasted humans who were categorized into groups based on the three different drug product formulations of dexketoprofen trometamol (DKT) salt&mdash
In vitro prediction of in vivo absorption of ibuprofen from suspensions through rational choice of dissolution conditions
Two ibuprofen suspension formulations were investigated for their dissolution in various bicarbonate, phosphate and acetate buffers. Phosphate and acetate gave faster release than bicarbonate at comparable molarities. Nevertheless, mass transport modelling using the reversible non-equilibrium (RNE) approach enabled the calculation of phosphate molarities that gave good matches to physiological bicarbonate in terms of ibuprofen dissolution. This shows that developing surrogate buffers for bicarbonate that are devoid of the technical difficulties associated with the bicarbonate-CO2 systems is possible. In addition, the intestinal dissolution kinetics of the tested suspensions were determined …
Effect of thickener on disintegration, dissolution and permeability of common drug products for elderly patients
Dysphagia is a very common problem suffered by elderly patients. The use of thickeners during administration in these patients helps to prevent difficulties with swallowing larger solid dosage forms. However, there are several indications when the thickeners may influence disintegration and dissolution processes of solid dosage forms, potentially affecting therapeutic efficacy. In this paper the effects of a commonly used thickener on tablet disintegration, dissolution and subsequent absorption of 6 formulated drugs frequently used in elderly patients (Aspirin, Atenolol, Acenocumarol, Candesartan, Ramipril and Valsartan) in two different administration conditions (intact tablet and crushed …
Comparison of segmental-dependent permeability in human and in situ perfusion model in rat.
Abstract Nowadays, alternative methods have been developed to predict intestinal permeability values in human as in vitro, in situ or ex vivo methods. They were developed by the necessity to avoid the problems of the human permeability experiments. However, determination of human permeability is needed to properly validate the alternative methods. For this reason, recently, Dahlgren et al. published an indirect method based on a deconvolution technique to estimate the human permeability in different gastrointestinal segments (jejunum, ileum and colon). Therefore, the objective of this research was to demonstrate that Doluisio technique is a useful method to predict the human permeability in…