0000000000121369

AUTHOR

Pertti Mattila

showing 27 related works from this author

Rectifiability and analytic capacity in the complex plane

1995

Analytic capacity and removable sets In this chapter we shall discuss a classical problem in complex analysis and its relations to the rectifiability of sets in the complex plane C . The problem is the following: which compact sets E ⊃ C are removable for bounded analytic functions in the following sense? (19.1) If U is an open set in C containing E and f : U\E → C is a bounded analytic function, then f has an analytic extension to U . This problem has been studied for almost a century, but a geometric characterization of such removable sets is still lacking. We shall prove some partial results and discuss some other results and conjectures. For many different function classes a complete so…

Pure mathematicsBounded functionMathematical analysisComplex measureAnalytic capacityOpen setHausdorff spaceFunction (mathematics)Complex planeMathematicsAnalytic function
researchProduct

Hausdorff measures and dimension

1995

CombinatoricsHausdorff distancePacking dimensionHausdorff dimensionMinkowski–Bouligand dimensionDimension functionHausdorff measureOuter measureEffective dimensionMathematics
researchProduct

Covering and differentiation

1995

CombinatoricsEuclidean distanceDiscrete mathematicsConvex geometryEuclidean spaceEuclidean geometryAffine spaceBall (mathematics)Euclidean distance matrixGaussian measureMathematics
researchProduct

Dimension of a measure

2000

Correlation dimensionPure mathematicsDimension (vector space)General MathematicsMinkowski–Bouligand dimensionMeasure (physics)MathematicsStudia Mathematica
researchProduct

Intersections with planes

1995

researchProduct

The packing dimension of projections and sections of measures

1996

AbstractWe show that for a probability measure μ on ℝnfor almost all m–dimensional subspaces V, provided dimH μ≤m. Here projv denotes orthogonal projection onto V, and dimH and dimp denote the Hausdorff and packing dimension of a measure. In the case dimH μ > m we show that at μ-almost all points x the slices of μ by almost all (n − m)-planes Vx through x satisfyWe give examples to show that these inequalities are sharp.

Packing dimensionGeneral MathematicsGeometryMathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct

Other measures and dimensions

1995

researchProduct

Rectifiability, weak linear approximation and tangent measures

1995

Tangent measureMathematical analysisTangent vectorLinear approximationMathematics
researchProduct

Principal Values of Cauchy Integrals, Rectifiable Measures and Sets

1991

The extensive studies started by A. P. Calderon in the sixties and continued by many authors up today have revealed that the Cauchy integrals $$ {C_{\Gamma }}f(z) = \int_{\Gamma } {\frac{{f\left( \zeta \right)d\zeta }}{{\zeta - z}}} $$ behave very well on sufficiently regular, not necessarily smooth, curves F, see [CCFJR], [D] and [MT].

Pure mathematicsMathematics::Number TheoryResidue theoremPrincipal valueCauchy principal valueCauchy distributionCauchy's integral theoremMathematics
researchProduct

Rectifiability and singular integrals

1995

symbols.namesakeMathematical analysisPrincipal valueEuclidean geometrysymbolsMaximal functionPoint (geometry)GeometryHardy–Littlewood maximal functionHilbert transformSingular integralMeasure (mathematics)Mathematics
researchProduct

Local structure of s-dimensional sets and measures

1995

Pure mathematicsConvex geometryEuclidean geometryDimension theoryGeometryLocal structureMathematics
researchProduct

Rectifiable sets and approximate tangent planes

1995

Mathematical analysisTangentGeometryTangent vectorMathematics
researchProduct

Rectifiable Measures in R n and Existence of Principal Values for Singular Integrals

1995

Pure mathematicsGeneral MathematicsPrincipal valueSingular integralMathematical economicsMathematicsJournal of the London Mathematical Society
researchProduct

Linear Approximation Property, Minkowski Dimension, and Quasiconformal Spheres

1990

010101 applied mathematicsProperty (philosophy)General Mathematics010102 general mathematicsMathematical analysisMinkowski–Bouligand dimensionSPHERESLinear approximation0101 mathematics01 natural sciencesMathematicsJournal of the London Mathematical Society
researchProduct

Intersections of general sets

1995

researchProduct

Tangent measures and densities

1995

Tangent measureMathematical analysisMathematics
researchProduct

Energies, capacities and subsets of finite measure

1995

Mathematical analysisMeasure (physics)Mathematics
researchProduct

Density theorems for Hausdorff and packing measures

1995

Discrete mathematicsVague topologyEuclidean geometryHausdorff spaceMathematics
researchProduct

Singular integrals, analytic capacity and rectifiability

1997

In this survey we study some interplay between classical complex analysis (removable sets for bounded analytic functions), harmonic analysis (singular integrals), and geometric measure theory (rectifiability).

Partial differential equationApplied MathematicsGeneral MathematicsMathematical analysisSingular integralGeometric measure theorysymbols.namesakeSingular solutionFourier analysisBounded functionsymbolsAnalytic capacityAnalysisMathematicsAnalytic functionThe Journal of Fourier Analysis and Applications
researchProduct

Tangent Measures, Densities, and Singular Integrals

1995

We introduce tangent measures in the sense of David Preiss. We discuss their applications to the density and rectifiability properties of general Borel measures in ℝ n as well as to the behaviour of certain singular integrals with respect to such measures.

Tangent measureMathematical analysisMathematics::General TopologyMathematics::Metric GeometrySingular integralMathematics
researchProduct

Rectifiability and densities

1995

researchProduct

Singular integrals and rectifiability

2002

We shall discuss singular integrals on lower dimensional subsets of Rn. A survey of this topic was given in [M4]. The first part of this paper gives a quick review of some results discussed in [M4] and a survey of some newer results and open problems. In the second part we prove some results on the Riesz kernels in Rn. As far as I know, they have not been explicitly stated and proved, but they are very closely related to some earlier results and methods. [Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial (Madrid), 2002].

AlgebraHarmonic analysisRiesz kernelPartial differential equationCauchy kernelGeneral MathematicsRectifiable measureSingular integralSingular integralMathematics
researchProduct

Hausdorff measures, Hölder continuous maps and self-similar fractals

1993

Let f: A → ℝn be Hölder continuous with exponent α, 0 < α ≼ 1, where A ⊂ ℝm has finite m-dimensional Lebesgue measure. Then, as is easy to see and well-known, the s-dimensional Hausdorif measure HS(fA) is finite for s = m/α. Many fractal-type sets fA also have positive Hs measure. This is so for example if m = 1 and f is a natural parametrization of the Koch snow flake curve in ℝ2. Then s = log 4/log 3 and α = log 3/log 4. In this paper we study the question of what s-dimensional sets in can intersect some image fA in a set of positive Hs measure where A ⊂ ℝm and f: A → ℝn is (m/s)-Hölder continuous. In Theorem 3·3 we give a general density result for such Holder surfacesfA which implies…

CombinatoricsLebesgue measureRiesz–Markov–Kakutani representation theoremGeneral MathematicsTotally disconnected spaceHausdorff dimensionMathematical analysisOuter measureAlmost everywhereHausdorff measureMeasure (mathematics)MathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct

Menger curvature and $C^{1}$ regularity of fractals

2000

Pure mathematicsFractalApplied MathematicsGeneral MathematicsMenger curvatureTopologyMathematicsProceedings of the American Mathematical Society
researchProduct

General measure theory

1995

Discrete mathematicsPure mathematicsConvex geometryEuclidean spacePoint–line–plane postulateOrdered geometryAffine spaceProduct measureBorel regular measureMeasure (mathematics)Mathematics
researchProduct

Measure and dimension functions: measurability and densities

1997

During the past several years, new types of geometric measure and dimension have been introduced; the packing measure and dimension, see [Su], [Tr] and [TT1]. These notions are playing an increasingly prevalent role in various aspects of dynamics and measure theory. Packing measure is a sort of dual of Hausdorff measure in that it is defined in terms of packings rather than coverings. However, in contrast to Hausdorff measure, the usual definition of packing measure requires two limiting procedures, first the construction of a premeasure and then a second standard limiting process to obtain the measure. This makes packing measure somewhat delicate to deal with. The question arises as to whe…

Discrete mathematicsPacking dimensionGeneral MathematicsHausdorff dimensionDimension functionOuter measureHausdorff measureEffective dimensionσ-finite measureBorel measureMathematicsMathematical Proceedings of the Cambridge Philosophical Society
researchProduct

Suuret teknologiat : miten teknologiaa kuvattiin Helsingin Sanomien uutisoinnissa ja kirjoittelussa vuosina 1889-1930

2016

Tutkimuksessa tarkastellaan teknologian historiaa 1900-luvun vaihteen Suo-messa. Päälähteenä toimii vuodesta 1889 lähtien julkaistu sanomalehti, Helsingin Sanomat. Tutkimuksessa selvitetään aineistolähtöisen grounded theory -menetelmän avulla niitä piirteitä ja tapoja, joilla uusia yhteiskuntaan merkittävästi vaikuttaneita teknologioita kuvattiin. Suuria teknologioita, joilla tarkoitetaan merkittäviä yhteiskuntaan juurtuneita teknologioita, alettiin kuvata ajankohtaisemmin ja niitä yhteiskuntaan liittäen 1930 – lukua lähestyttäessä. Tämä oli seurausta teknologian yleistymisestä ja aikaisempaa merkittävämmästä näkyvyydestä yhteiskunnassa. Teknologian kuvaaminen muuttui selkeimmin auton kohda…

autotlehdistökirjoitteluHelsingin Sanomat (sanomalehti)lentokoneetteknologiateknologinen kehityshistoria
researchProduct