6533b860fe1ef96bd12c2dfb
RESEARCH PRODUCT
Hausdorff measures, Hölder continuous maps and self-similar fractals
Pertti MattilaMiguel ÁNgel Martínsubject
CombinatoricsLebesgue measureRiesz–Markov–Kakutani representation theoremGeneral MathematicsTotally disconnected spaceHausdorff dimensionMathematical analysisOuter measureAlmost everywhereHausdorff measureMeasure (mathematics)Mathematicsdescription
Let f: A → ℝn be Hölder continuous with exponent α, 0 < α ≼ 1, where A ⊂ ℝm has finite m-dimensional Lebesgue measure. Then, as is easy to see and well-known, the s-dimensional Hausdorif measure HS(fA) is finite for s = m/α. Many fractal-type sets fA also have positive Hs measure. This is so for example if m = 1 and f is a natural parametrization of the Koch snow flake curve in ℝ2. Then s = log 4/log 3 and α = log 3/log 4. In this paper we study the question of what s-dimensional sets in can intersect some image fA in a set of positive Hs measure where A ⊂ ℝm and f: A → ℝn is (m/s)-Hölder continuous. In Theorem 3·3 we give a general density result for such Holder surfacesfA which implies for example that Hs(E fA) = 0 for any totally disconnected self-similar set. E in this situation. In Theorem 32 we shall first show that such fA has positive s-dimensional lower density H8 almost everywhere.
year | journal | country | edition | language |
---|---|---|---|---|
1993-07-01 | Mathematical Proceedings of the Cambridge Philosophical Society |