0000000000121484
AUTHOR
Dongyoo Kim
Lattice dynamics of CuAlO2 under high pressure fromab initio calculations
The density functional perturbation theory is employed to study the vibrational properties of CuAlO 2 under pressure. The calculations are preformed using the pseudopotential wave method and the local density approximation for the exchange-correlation (XC) potential. The d electrons of Cu are treated as valence states. We present the phonon dispersion curves. Our results are in good agreement with the available experimental Raman scattering experiments. Ab initio calculations show the presence of a dynamical instability, possibly related with the experimentally observed phase transition.
Electronic structure of CuAlO2 and CuScO2 delafossites under pressure
The electronic structure of CuAlO 2 and CuScO 2 delafossites is investigated by means of optical absorption measurements under pressure and ab initio band structure calculations. Measurements are carried out on CuAlO 2 monocrystals and pulsed laser deposited CuAlO 2 and CuScO 2 thin films up to 20 GPa. CuAlO 2 is an indirect semiconductor that is stable in the pressure range explored here. The pressure coefficients of the indirect and direct gaps are found to be 15 meV/GPa and 2 meV/GPa respectively. CuScO 2 is a direct semiconductor and the pressure coefficient of the excitonic peak energy is -5.5 meV/GPa. Two reversible phase transitions are observed in CuScO 2 . At 13 GPa the delafossite…
XRD and XAS structural study of CuAlO2under high pressure
International audience; We present the results of x-ray diffraction and x-ray absorption spectroscopy experiments in CuAlO2 under high pressure. We discuss the polarization dependence of the x-ray absorption near-edge structure at the Cu K-edge. XRD under high pressure evidences anisotropic compression, the a-axis being more compressible than the c-axis. EXAFS yields the copper-oxygen bond length, from which the only internal parameter of the delafossite structure is deduced. The combination of anisotropic compression and the internal parameter decrease results in a regularization of the AlO6 octahedra. The anisotropic compression is related to the chemical trends observed in the lattice pa…
Refractive index of the CuAlO2delafossite
The refractive index of the CuAlO2 delafossite has been determined from interference measurements in single crystals performed in the visible, near and mid infrared regions of the spectrum. The analysis of the refractive index dispersion corresponding to light polarization perpendicular to the c-axis (P ⊥ c) yields a static dielectric constant of 0 = 7.7 ± 0.8 and a low frequency electronic constant ∞ = 5.1 ± 0.1. The relevant infrared active mode is found to be at 550 ± 25 cm−1. The electronic contribution can be well described by a Penn gap at 39 000 ± 1000 cm−1. Both the refractive index and its dispersion are found to be smaller for P||c than for P ⊥ c.
Pressure and temperature dependence of the lattice dynamics ofCuAlO2investigated by Raman scattering experiments andab initiocalculations
We have studied the vibrational properties of $\mathrm{Cu}\mathrm{Al}{\mathrm{O}}_{2}$ by means of Raman scattering in ambient conditions, at low temperature, and also at high pressure. Results are discussed in the framework of an ab initio calculation. Raman active modes have wave numbers ${\ensuremath{\sigma}}_{{E}_{g}}=418.1\ifmmode\pm\else\textpm\fi{}0.2\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$ and ${\ensuremath{\sigma}}_{{A}_{1g}}=767.2\ifmmode\pm\else\textpm\fi{}0.3\phantom{\rule{0.3em}{0ex}}{\mathrm{cm}}^{\ensuremath{-}1}$. Polarized measurements with single crystals have confirmed their symmetry. We present and discuss the phonon-dispersion curves. Below $200\phant…