0000000000121496

AUTHOR

Daniel Häusermann

Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress

Abstract The effects of uniaxial stress on the pressure-induced α → ω transition in pure titanium (Ti) are investigated by means of angle dispersive X-ray diffraction in a diamond-anvil cell. Experiments under four different pressure environments reveal that: (1) the onset of the transition depends on the pressure medium used, going from 4.9 GPa (no pressure medium) to 10.5 GPa (argon pressure medium); (2) the α and ω phases coexist over a rather large pressure range, which depends on the pressure medium employed; (3) the hysteresis and quenchability of the ω phase is affected by differences in the sample pressure environment; and (4) a short-term laser heating of Ti lowers the α → ω transi…

research product

Melting of tantalum at high pressure determined by angle dispersive x-ray diffraction in a double-sided laser-heated diamond-anvil cell

The high pressure and high temperature phase diagram of Ta has been studied in a laser-heated diamond-anvil cell (DAC) using x-ray diffraction measurements up to 52 GPa and 3800 K. The melting was observed at nine different pressures, being the melting temperature in good agreement with previous laser-heated DAC experiments, but in contradiction with several theoretical calculations and previous piston-cylinder apparatus experiments. A small slope for the melting curve of Ta is estimated (dTm/dP = 24 K/GPa at 1 bar) and a possible explanation for this behaviour is given. Finally, a P-V-T equation of states is obtained, being the temperature dependence of the thermal expansion coefficient an…

research product

Effects of pressure on the local atomic structure of CaWO4 and YLiF4: mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitions

The pressure response of the scheelite phase of CaWO4 (YLiF4) and the occurrence of the pressure induced scheelite-to-wolframite (M-fergusonite) transition are reviewed and discussed. It is shown that the change of the axial parameters under compression is related with the different pressure dependence of the W-O (Li-F) and Ca-O (Y-F) interatomic bonds. Phase transition mechanisms for both compounds are proposed. Furthermore, a systematic study of the phase transition in 16 different scheelite ABX4 compounds indicates that the transition pressure increases as the packing ratio of the anionic BX4 units around the A cations increases.

research product