0000000000122075

AUTHOR

Ruben Ragg

0000-0001-6302-2985

showing 7 related works from this author

Amine functionalized ZrO2 nanoparticles as biocompatible and luminescent probes for ligand specific cellular imaging

2015

Surface functionalized ZrO2 nanoparticles show strong photoluminescence and are a versatile tool for cellular targeting due to their chemical functionality. They are highly photostable, biocompatible and amenable to coupling with bioligands (e.g. secondary goat anti-rabbit antibody (GAR) and tri-phenyl phosphine (TPP)) via carbodiimide chemistry. Antibody (GAR) functionalized ZrO2 nanoparticles were used to image the nuclear protein Sirt6, whereas triphenyl phosphonium ion (TPP) functionalized ZrO2 nanoparticles specifically targeted the mitochondria. The versatility and easiness of the ZrO2 surface modification opens up new possibilities for designing non-toxic water dispersible and photos…

Zro2 nanoparticlesMaterials scienceLigandBiomedical EngineeringNanotechnologyGeneral ChemistryGeneral MedicineBiocompatible materialchemistry.chemical_compoundchemistrySurface modificationGeneral Materials ScienceAmine gas treatingLuminescencePhosphineCarbodiimideJournal of Materials Chemistry B
researchProduct

Cover Picture: Advanced Complex Inorganic Nanomaterials (Eur. J. Inorg. Chem. 13‐14/2016)

2016

Inorganic ChemistryChemistryNanotechnologyCover (algebra)NanomaterialsEuropean Journal of Inorganic Chemistry
researchProduct

Molybdenum Trioxide Nanoparticles with Intrinsic Sulfite Oxidase Activity

2014

Sulfite oxidase is a mitochondria-located molybdenum-containing enzyme catalyzing the oxidation of sulfite to sulfate in the amino acid and lipid metabolism. Therefore, it plays a major role in detoxification processes, where defects in the enzyme cause a severe infant disease leading to early death with no efficient or cost-effective therapy in sight. Here we report that molybdenum trioxide (MoO3) nanoparticles display an intrinsic biomimetic sulfite oxidase activity under physiological conditions, and, functionalized with a customized bifunctional ligand containing dopamine as anchor group and triphenylphosphonium ion as targeting agent, they selectively target the mitochondria while bein…

LightPhotochemistryMetal NanoparticlesGeneral Physics and AstronomyMolybdenum trioxidechemistry.chemical_compoundSulfiteSulfite oxidaseElectrochemistryNanotechnologyGeneral Materials ScienceBifunctionalAmino Acid Metabolism Inborn ErrorsElectrodesSulfite oxidase deficiencyMolybdenumchemistry.chemical_classificationPhotonsBinding SitesNanowiresSulfite OxidaseGeneral EngineeringOxidesAmino acidKineticsEnzymechemistryBiochemistryNanoparticlesEnzyme mimicElectronicsZinc OxideOxidation-ReductionACS Nano
researchProduct

Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast

2020

Superoxide radicals are associated with the development of many severe diseases, such as cancer. Under nonpathogenic conditions, the natural enzyme superoxide dismutase (SOD) regulates the intracellular superoxide concentrations, but nearly all tumor tissues show reduced SOD levels. Selective imaging in early progression stages remains a key requirement for efficient cancer diagnosis and treatment. Magnetic resonance imaging (MRI) as a noninvasive tool with high spatial resolution may offer advantages here, but MRI contrast agents exhibiting a redox-triggered change in the image contrast towards superoxide radicals have not been reported so far. Here we show that manganese oxide (MnO) nanop…

Biomedical EngineeringNanoparticle02 engineering and technology010402 general chemistry01 natural sciencesSuperoxide dismutasechemistry.chemical_compoundNuclear magnetic resonancemedicineGeneral Materials Sciencechemistry.chemical_classificationmedicine.diagnostic_testbiologySuperoxideCancerMagnetic resonance imagingGeneral ChemistryGeneral Medicine021001 nanoscience & nanotechnologymedicine.disease0104 chemical sciencesEnzymechemistryCancer cellBiophysicsbiology.protein0210 nano-technologyIntracellularJournal of Materials Chemistry B
researchProduct

Solids Go Bio: Inorganic Nanoparticles as Enzyme Mimics

2016

A longstanding goal of biomimetic chemistry is the design and synthesis of functional enzyme mimics. The past three decades have seen a wide variety of materials, including metal complexes, polymers and other biomolecules, that mimic the structures and functions of naturally occurring enzymes. Among these, inorganic nanoparticles offer huge potential, because they are more stable than their natural counterparts, while having large surface areas and sizes comparable to those of natural enzymes. Therefore, a considerable number of “artificial enzymes” derived from inorganic nanomaterials have been reported. This microreview highlights the recent progress in the field of enzymatically active i…

chemistry.chemical_classificationbiologyBiomoleculeNanoparticleNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesNanomaterialsInorganic ChemistryEnzymechemistryBiocatalysisbiology.protein0210 nano-technologyInorganic nanoparticlesPeroxidaseEuropean Journal of Inorganic Chemistry
researchProduct

Glycine-functionalized copper(ii) hydroxide nanoparticles with high intrinsic superoxide dismutase activity

2017

Superoxide dismutases (SOD) are a group of enzymes that catalyze the dismutation of superoxide (O2−) radicals into molecular oxygen (O2) and H2O2 as a first line of defense against oxidative stress. Here, we show that glycine-functionalized copper(II) hydroxide nanoparticles (Gly-Cu(OH)2 NPs) are functional SOD mimics, whereas bulk Cu(OH)2 is insoluble in water and catalytically inactive. In contrast, Gly-Cu(OH)2 NPs form water-dispersible mesocrystals with a SOD-like activity that is larger than that of their natural CuZn enzyme counterpart. Based on this finding, we devised an application where Gly-Cu(OH)2 NPs were incorporated into cigarette filters. Cigarette smoke contains high concent…

RadicalInorganic chemistryGlycine02 engineering and technology010402 general chemistrymedicine.disease_cause01 natural sciencesSuperoxide dismutasechemistry.chemical_compoundSmokeHydroxidesmedicineHumansGeneral Materials ScienceReactive nitrogen specieschemistry.chemical_classificationCopper(II) hydroxideReactive oxygen speciesbiologySuperoxide DismutaseSuperoxideHydrogen PeroxideTobacco Products021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical scienceschemistryA549 Cellsbiology.proteinNanoparticlesHydroxideReactive Oxygen Species0210 nano-technologyCopperOxidative stressNanoscale
researchProduct

Pd@Fe2O3 Superparticles with Enhanced Peroxidase Activity by Solution Phase Epitaxial Growth

2017

Compared to conventional deposition techniques for the epitaxial growth of metal oxide structures on a bulk metal substrate, wet-chemical synthesis based on a dispersible template offers advantages such as low cost, high throughput, and the capability to prepare metal/metal oxide nanostructures with controllable size and morphology. However, the synthesis of such organized multicomponent architectures is difficult because the size and morphology of the components are dictated by the interplay of interfacial strain and facet-specific reactivity. Here we show that solution-processable two-dimensional Pd nanotetrahedra and nanoplates can be used to direct the epitaxial growth of γ-Fe2O3 nanoro…

NanostructureMaterials scienceGeneral Chemical EngineeringOxideNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyEpitaxy01 natural sciences0104 chemical sciencesNanomaterialsMetalchemistry.chemical_compoundchemistryPhase (matter)visual_artMaterials Chemistryvisual_art.visual_art_mediumReactivity (chemistry)Nanorod0210 nano-technologyChemistry of Materials
researchProduct