0000000000122973

AUTHOR

Michele Giunta

0000-0002-7388-5095

Autonomous frequency stabilization of two extended cavity diode lasers at the potassium wavelength on a sounding rocket

We have developed, assembled, and flight-proven a stable, compact, and autonomous extended cavity diode laser (ECDL) system designed for atomic physics experiments in space. To that end, two micro-integrated ECDLs at 766.7 nm were frequency stabilized during a sounding rocket flight by means of frequency modulation spectroscopy (FMS) of 39^K and offset locking techniques based on the beat note of the two ECDLs. The frequency stabilization as well as additional hard- and software to test hot redundancy mechanisms were implemented as part of a state-machine, which controlled the experiment completely autonomously throughout the entire flight mission.

research product

Optical frequency combs for space applications

Optical frequency comb-based high resolution laser spectroscopy has been demonstrated in space under micro-gravity on two sounding rocket based experiments. The comb has been used to simultaneously measure two different atomic transitions.

research product

Space-borne frequency comb metrology

Precision time references in space are of major importance to satellite-based fundamental science, global satellite navigation, earth observation, and satellite formation flying. Here we report on the operation of a compact, rugged, and automated optical frequency comb setup on a sounding rocket in space under microgravity. The experiment compared two clocks, one based on the optical D2 transition in Rb, and another on hyperfine splitting in Cs. This represents the first frequency comb based optical clock operation in space, which is an important milestone for future satellite-based precision metrology. Based on the approach demonstrated here, future space-based precision metrology can be i…

research product