0000000000123182

AUTHOR

Alexander Pulvermüller

showing 7 related works from this author

Differential expression and interaction with the visual G-protein transducin of centrin isoforms in mammalian photoreceptor cells.

2004

Photoisomerization of rhodopsin activates a heterotrimeric G-protein cascade leading to closure of cGMP-gated channels and hyperpolarization of photoreceptor cells. Massive translocation of the visual G-protein transducin, Gt, between subcellular compartments contributes to long term adaptation of photoreceptor cells. Ca(2+)-triggered assembly of a centrin-transducin complex in the connecting cilium of photoreceptor cells may regulate these transducin translocations. Here we demonstrate expression of all four known, closely related centrin isoforms in the mammalian retina. Interaction assays revealed binding potential of the four centrin isoforms to Gtbetagamma heterodimers. High affinity b…

Rhodopsingenetic structuresLightBlotting WesternBiologyBiochemistryRetinaRats Sprague-DawleyMiceCalcium-binding proteinHeterotrimeric G proteinmedicineAnimalsProtein IsoformsScattering RadiationCiliaTransducinMicroscopy ImmunoelectronMolecular BiologyCyclic GMPGlutathione TransferaseCentrosomeRetinaChromatographyDose-Response Relationship DrugReverse Transcriptase Polymerase Chain ReactionCiliumCalcium-Binding ProteinsCell BiologySequence Analysis DNARod Cell Outer SegmentRecombinant ProteinsCell biologyRatsMice Inbred C57BLKineticsProtein Transportmedicine.anatomical_structureMicroscopy FluorescenceRhodopsinCentrosomeCentrinbiology.proteinCalciumCattleElectrophoresis Polyacrylamide Gelsense organsTransducinProtein BindingThe Journal of biological chemistry
researchProduct

Calcium-Dependent Assembly of Centrin-G-Protein Complex in Photoreceptor Cells

2002

Photoexcitation of rhodopsin activates a heterotrimeric G-protein cascade leading to cyclic GMP hydrolysis in vertebrate photoreceptors. Light-induced exchanges of the visual G-protein transducin between the outer and inner segment of rod photoreceptors occur through the narrow connecting cilium. Here we demonstrate that transducin colocalizes with the Ca(2+)-binding protein centrin 1 in a specific domain of this cilium. Coimmunoprecipitation, centrifugation, centrin overlay, size exclusion chromatography, and kinetic light-scattering experiments indicate that Ca(2+)-activated centrin 1 binds with high affinity and specificity to transducin. The assembly of centrin-G-protein complex is medi…

Lightgenetic structuresChromosomal Proteins Non-HistoneMacromolecular SubstancesImmunoprecipitationG proteinCentrifugationPlasma protein bindingBiologyRetinaSubstrate SpecificityRats Sprague-DawleyMiceHeterotrimeric G proteinCalcium-binding proteinAnimalsScattering RadiationTransducinMicroscopy ImmunoelectronCell Growth and DevelopmentMolecular BiologyCalcium-Binding ProteinsCell BiologyHeterotrimeric GTP-Binding ProteinsPrecipitin TestsRatsCell biologyMice Inbred C57BLMolecular WeightRhodopsinCentrinChromatography Gelbiology.proteinCalciumCattlesense organsTransducinPhotoreceptor Cells VertebrateProtein BindingSignal TransductionMolecular and Cellular Biology
researchProduct

Light-dependent CK2-mediated phosphorylation of centrins regulates complex formation with visual G-protein.

2008

AbstractCentrins are Ca2+-binding EF-hand proteins. All four known centrin isoforms are expressed in the ciliary apparatus of photoreceptor cells. Cen1p and Cen2p bind to the visual G-protein transducin in a strictly Ca2+-dependent way, which is thought to regulate light driven movements of transducin between photoreceptor cell compartments. These relatively slow motile processes represent a novel paradigm in light adaptation of photoreceptor cells.Here we validated specific phosphorylation as a novel regulator of centrins in photoreceptors. Centrins were differentially phosphorylated during photoreceptor dark adaptation. Inhibitor treatments revealed protein kinase CK2 as the major protein…

genetic structuresLightG proteinVisionChromosomal Proteins Non-HistoneBlotting WesternDark AdaptationBiologySignal transductionMicrotubulesPhotoreceptor cellMass SpectrometryCa2+-binding proteinsSubstrate SpecificityRats Sprague-DawleyMiceHeterotrimeric G proteinmedicineAnimalsCiliaTransducinPhosphorylationProtein kinase ACasein Kinase IIFluorescent Antibody Technique IndirectMicroscopy ImmunoelectronMolecular BiologyCytoskeletonCiliumCalcium-Binding ProteinsCell BiologyCell biologyRatsMice Inbred C57BLmedicine.anatomical_structureCentrinPhosphorylationHeterotrimeric G-proteinCalciumCattleTransducinsense organsMolecular translocationPhotoreceptor Cells VertebrateProtein BindingBiochimica et biophysica acta
researchProduct

Centrins in retinal photoreceptor cells: regulators in the connecting cilium.

2008

Changes in the intracellular Ca2+ concentration regulate the visual signal transduction cascade directly or more often indirectly through Ca2+-binding proteins. Here we focus on centrins, which are members of a highly conserved subgroup of the EF-hand superfamily of Ca2+-binding proteins in photoreceptor cells of the vertebrate retina. Centrins are commonly associated with centrosome-related structures. In mammalian retinal photoreceptor cells, four centrin isoforms are expressed as prominent components in the connecting cilium linking the light-sensitive outer segment compartment with the metabolically active inner segment compartment. Our data indicate that Ca2+-activated centrin isoforms…

Gene isoformgenetic structuresChromosomal Proteins Non-HistoneBiologyContractile ProteinsHeterotrimeric G proteinmedicineCompartment (development)AnimalsHumansCiliaEye ProteinsVision OcularRetinaCalcium-Binding ProteinsSensory SystemsCell biologyOphthalmologymedicine.anatomical_structureCentrinCalciumsense organsTransducinSignal transductionIntracellularPhotoreceptor Cells VertebrateProgress in retinal and eye research
researchProduct

Insights into functional aspects of centrins from the structure of N-terminally extended mouse centrin 1

2006

AbstractCentrins are members of the family of Ca2+-binding EF-hand proteins. In photoreceptor cells, centrin isoform 1 is specifically localized in the non-motile cilium. This connecting cilium links the light-sensitive outer segment with the biosynthetic active inner segment of the photoreceptor cell. All intracellular exchanges between these compartments have to occur through this cilium. Three-dimensional structures of centrins from diverse organisms are known, showing that the EF-hand motifs of the N-terminal domains adopt closed conformations, while the C-terminal EF-hand motifs have open conformations. The crystal structure of an N-terminally extended mouse centrin 1 (MmCen1-L) resemb…

Protein ConformationAmino Acid MotifsSequence HomologyPlasma protein bindingEF-handTroponin CMiceStructure-Activity RelationshipProtein structureCalcium-binding proteinConnecting ciliumCentrinAnimalsHumansPhotoreceptor CellsCiliaEF Hand MotifsProtein Structure QuaternaryChemistryEF handCiliumCalcium-Binding ProteinsTerminal Repeat SequencesCalcium-binding proteinSensory SystemsProtein Structure TertiaryCell biologyOphthalmologyCentrinCalciumTransducinsense organsX-ray structureProtein BindingVision Research
researchProduct

Centrins, gatekeepers for the light-dependent translocation of transducin through the photoreceptor cell connecting cilium

2006

Centrins are members of a highly conserved subgroup of the EF-hand superfamily of Ca(2+)-binding proteins commonly associated with centrosome-related structures. In the retina, centrins are also prominent components of the photoreceptor cell ciliary apparatus. Centrin isoforms are differentially localized at the basal body and in the lumen of the connecting cilium. All molecular exchanges between the inner and outer segments occur through this narrow connecting cilium. Ca(2+)-activated centrin isoforms bind to the visual heterotrimeric G-protein transducin via an interaction with the betagamma-subunit. Ca(2+)-dependent assemblies of centrin/G-protein complexes may regulate the transducin mo…

Gene isoformPhotoreceptorsgenetic structuresPhotoreceptor cellHeterotrimeric G proteinConnecting ciliummedicineCentrinBasal bodyAnimalsPhotoreceptor CellsCiliaTransducinPhosphorylationVision OcularCentrosomeRetinaChemistryLight-dependent translocationCiliumCalcium-Binding ProteinsSensory SystemsCell biologyProtein TransportOphthalmologymedicine.anatomical_structureCentrinVertebratesTransducinsense organsPhotic StimulationVision Research
researchProduct

Crystallization and preliminary X-ray studies of mouse centrin1.

2005

The expression, purification, crystallization and preliminary X-ray diffraction studies of mouse centrin1 are reported. Centrins belong to a family of Ca{sup 2+}-binding EF-hand proteins that play a fundamental role in centrosome duplication and the function of cilia. To shed light on the structure–function relationship of these proteins, mouse centrin1 has been crystallized. The mouse centrin1 has been expressed in Escherichia coli as a GST-centrin fusion protein containing a thrombin protease cleavage site between the fusion partners. Two constructs with different linking-sequence lengths were expressed and purified. Thrombin cleavage yielded functional centrin1 and N-terminally extended …

StereochemistryChromosomal Proteins Non-HistoneMolecular Sequence DataBiophysicsmacromolecular substancesCleavage (embryo)Crystallography X-RayBiochemistrylaw.inventionchemistry.chemical_compoundMiceStructure-Activity RelationshipThrombinStructural BiologylawGeneticsmedicineEscherichia coliAnimalsCentrosome duplicationAmino Acid SequenceCrystallizationDose-Response Relationship DrugCalcium-Binding ProteinsSpace groupCondensed Matter PhysicsFusion proteinRecombinant ProteinsCrystallographyenzymes and coenzymes (carbohydrates)KineticschemistryCrystallization CommunicationsX-ray crystallographybiological scienceshealth occupationsbacteriaCrystallizationEthylene glycolmedicine.drugActa crystallographica. Section F, Structural biology and crystallization communications
researchProduct