0000000000123751

AUTHOR

Renata Grimaldi

showing 8 related works from this author

Differentiability of the isoperimetric profile and topology of analytic Riemannian manifolds

2012

Abstract We show that smooth isoperimetric profiles are exceptional for real analytic Riemannian manifolds. For instance, under some extra assumptions, this can happen only on topological spheres. To cite this article: R. Grimaldi et al., C. R. Acad. Sci. Paris, Ser. I 347 (2009).

Mathematics - Differential GeometryIsoperimetric dimensionRiemannian geometryTopology01 natural sciencessymbols.namesakeRicci-flat manifoldFOS: MathematicsDifferentiable functionMorse theory0101 mathematicsTopology (chemistry)Computer Science::DatabasesIsoperimetric inequalityMorse theoryMathematicsRiemann surface010102 general mathematicsGeneral Medicinecalibration53C20;49Q20;14P15;32B20010101 applied mathematicsDifferential Geometry (math.DG)Riemann surface[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbolsMathematics::Differential GeometryIsoperimetric inequality
researchProduct

The ends of manifolds with bounded geometry, linear growth and finite filling area

2002

We prove that simply connected open Riemannian manifolds of bounded geometry, linear growth and sublinear filling growth (e.g. finite filling area) are simply connected at infinity.

Mathematics - Differential GeometrySublinear functionHyperbolic geometryGeometryGeometric Topology (math.GT)Algebraic geometryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMathematics - Geometric Topology53 C 23 57 N 15Differential geometryDifferential Geometry (math.DG)Bounded functionSimply connected spaceFOS: MathematicsCondensed Matter::Strongly Correlated ElectronsGeometry and TopologyMathematics::Differential GeometrySimply connected at infinityMathematicsProjective geometry
researchProduct

La geometria asintotica delle foglie « eccezionali » delle foliazioni di Anosov

1988

On considere les feuilletages d'Anosov de T1S, avec S surface hyperbolique fermee, et on etudie la geometrie asymptotique des feuilles « exceptionnelles ».

Applied MathematicsHumanitiesMathematicsAnnali di Matematica Pura ed Applicata
researchProduct

Bounded geometry, growth and topology

2010

We characterize functions which are growth types of Riemannian manifolds of bounded geometry.

Mathematics - Differential GeometryMathematics(all)bounded geometryGeneral MathematicsgrowthAbsolute geometryGeometryRiemannian geometry53C20Topology01 natural sciencesQuasi-isometriessymbols.namesakeGrowth types0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics::Symplectic GeometryGeometry and topologyMathematicsvolumeCurvature of Riemannian manifoldsApplied MathematicsComputer Science::Information Retrieval010102 general mathematicsMathematical analysisMathematics::Geometric Topologyfinite topological typeDifferential geometryDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Bounded functionsymbols010307 mathematical physicsMathematics::Differential GeometryConformal geometryGraphsSymplectic geometry
researchProduct

Semianalyticity of isoperimetric profiles

2009

It is shown that, in dimensions $<8$, isoperimetric profiles of compact real analytic Riemannian manifolds are semi-analytic.

Mathematics - Differential Geometry0209 industrial biotechnologyRiemannian Geometry Real Analytic Geometry Geometric measure Theory Metric Geometry Geometric Analysis.Calibration (statistics)02 engineering and technologyAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesake020901 industrial engineering & automationFOS: MathematicsMathematics::Metric GeometryMorse theory0101 mathematicsMathematics::Symplectic GeometryIsoperimetric inequalityMorse theoryMathematicsRiemann surface010102 general mathematicsMathematical analysis53C20;49Q20;14P15;32B20Differential Geometry (math.DG)Computational Theory and Mathematics[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]Riemann surfaceCalibrationsymbolsGeometry and TopologyMathematics::Differential GeometryIsoperimetric inequalityAnalysis
researchProduct

La topologie à l'infini des variétés à géométrie bornée et croissance linéaire

1997

Abstract We study the topology at infinity of a non compact riemannian manifold with bounded geometry and linear growth-type.

Pure mathematicsMathematics(all)General Mathematicsmedia_common.quotation_subjectBounded functionApplied MathematicsMathematical analysisMathematics::Differential GeometryRiemannian manifoldInfinityTopology (chemistry)media_commonMathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Sulla geometria asintotica delle foglie di una foliazione

1983

Pour les feuilles (non-compactes) d’un feuilletageF d’une variete differentiable compacteV ily a une «geometrie riemannienne asymptotique» bien definie a quasiisometrie pres.

General MathematicsAlgebra over a fieldHumanitiesMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

Sur la r�gularit� de la fonction croissance d'une vari�t� riemannienne

1994

On etudie la differentiabilite de la fonction croissance d'une variete riemannienne complete. En general, elle a la meme regularite qu'une fonction concave: la derivee peut avoir des sauts pour lesquels on donne une formule. Dans le cas analytique reel, la fonction croissance est de classeC1. Un exemple montre qu'elle n'est pas necessairementC2. A titre d'application, nous construisons, pour toute variete ouverte paracompacteM et toute fonction croissantev de classeC1, une metrique continue de croissance egale av et une metrique de classeC∞ surM de croissance proche dev en topologieC1-fine.

Pure mathematicsDifferential geometryHyperbolic geometryGeometry and TopologyAlgebraic geometryMathematicsProjective geometryGeometriae Dedicata
researchProduct