0000000000123795

AUTHOR

Nina Krautwurst

showing 3 related works from this author

Trapping Amorphous Intermediates of Carbonates – A Combined Total Scattering and NMR Study

2018

Crystallization via metastable phases plays an important role in chemical manufacturing, biomineralization, and protein crystallization, but the kinetic pathways leading from metastable phases to the stable crystalline modifications are not well understood. In particular, the fast crystallization of amorphous intermediates makes a detailed characterization challenging. To circumvent this problem, we devised a system that allows trapping and stabilizing the amorphous intermediates of representative carbonates (calcium, strontium, barium, manganese, and cadmium). The long-term stabilization of these transient species enabled a detailed investigation of their composition, structure, and morpho…

StrontiumCoordination numberchemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryCatalysisAmorphous calcium carbonate0104 chemical scienceslaw.inventionAmorphous solidCondensed Matter::Materials Sciencechemistry.chemical_compoundColloid and Surface ChemistrychemistryChemical engineeringlawMetastabilityCrystallization0210 nano-technologyProtein crystallizationBiomineralizationJournal of the American Chemical Society
researchProduct

Mechanochemical Access to Defect-Stabilized Amorphous Calcium Carbonate

2018

Amorphous calcium carbonate (ACC) is an important precursor in the biomineralization of crystalline CaCO3. The lifetime of transient ACC in nature is regulated by an organic matrix, to use it as an intermediate storage buffer or as a permanent structural element. The relevance of ACC in material science is related to our understanding of CaCO3 crystallization pathways. ACC can be obtained by liquid–liquid phase separation, and it is typically stabilized with the help of macromolecules. We have prepared ACC by milling calcite in a planetary ball mill. The ball-milled amorphous calcium carbonate (BM-ACC) was stabilized with small amounts of Na2CO3. The addition of foreign ions in form of Na2C…

CalciteMaterials scienceGeneral Chemical EngineeringRecrystallization (metallurgy)02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAmorphous calcium carbonate0104 chemical scienceslaw.inventionchemistry.chemical_compoundchemistryChemical engineeringlawMaterials ChemistryAnhydrousCrystallization0210 nano-technologyBall millMacromoleculeBiomineralizationChemistry of Materials
researchProduct

Two-Step Nucleation Process of Calcium Silicate Hydrate, the Nanobrick of Cement

2018

Despite a millennial history and the ubiquitous presence of cement in everyday life, the molecular processes underlying its hydration behavior, like the formation of calcium–silicate–hydrate (C–S–H), the binding phase of concrete, are mostly unexplored. Using time-resolved potentiometry and turbidimetry combined with dynamic light scattering, small-angle X-ray scattering, and cryo-TEM, we demonstrate C–S–H formation to proceed via a complex two-step pathway. In the first step, amorphous and dispersed spheroids are formed, whose composition is depleted in calcium compared to C–S–H and charge compensated with sodium. In the second step, these amorphous spheroids crystallize to tobermorite-typ…

CementMaterials scienceGeneral Chemical EngineeringNucleation02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAmorphous solidlaw.inventionchemistry.chemical_compoundchemistryDynamic light scatteringChemical engineeringlawPhase (matter)PercolationMaterials Chemistry[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Calcium silicate hydrateCrystallization0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct