6533b7d8fe1ef96bd12696dd
RESEARCH PRODUCT
Mechanochemical Access to Defect-Stabilized Amorphous Calcium Carbonate
Yue WuNina KrautwurstMihail MondeshkiSebastian LeukelMartin PanthöferWolfgang TremelGregor Kieslichsubject
CalciteMaterials scienceGeneral Chemical EngineeringRecrystallization (metallurgy)02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAmorphous calcium carbonate0104 chemical scienceslaw.inventionchemistry.chemical_compoundchemistryChemical engineeringlawMaterials ChemistryAnhydrousCrystallization0210 nano-technologyBall millMacromoleculeBiomineralizationdescription
Amorphous calcium carbonate (ACC) is an important precursor in the biomineralization of crystalline CaCO3. The lifetime of transient ACC in nature is regulated by an organic matrix, to use it as an intermediate storage buffer or as a permanent structural element. The relevance of ACC in material science is related to our understanding of CaCO3 crystallization pathways. ACC can be obtained by liquid–liquid phase separation, and it is typically stabilized with the help of macromolecules. We have prepared ACC by milling calcite in a planetary ball mill. The ball-milled amorphous calcium carbonate (BM-ACC) was stabilized with small amounts of Na2CO3. The addition of foreign ions in form of Na2CO3 is crucial to achieve complete amorphization. Their incorporation generates defects that hinder recrystallization kinetically. In contrast to wet-chemically prepared ACC, the solvent-free approach makes BM-ACC an anhydrous modification. The amorphization process was monitored by quantitative Fourier transform infrare...
year | journal | country | edition | language |
---|---|---|---|---|
2018-08-17 | Chemistry of Materials |