0000000000124115

AUTHOR

Dong Kyun Seo

Size-selective incorporation of DNA nanocages into nanoporous antimony-doped tin oxide materials.

A conductive nanoporous antimony-doped tin oxide (ATO) powder has been prepared using the sol-gel method that contains three-dimensionally interconnected pores within the metal oxide and highly tunable pore sizes on the nanoscale. It is demonstrated that these porous materials possess the capability of hosting a tetrahedral-shaped DNA nanostructure of defined dimensions with high affinity. The tunability of pore size enables the porous substrate to selectively absorb the DNA nanostructures into the metal oxide cavities or exclude them from entering the surface layer. Both confocal fluorescence microscopy and solution FRET experiments revealed that the DNA nanostructures maintained their int…

research product

Template-free synthesis and structural evolution of discrete hydroxycancrinite zeolite nanorods from high-concentration hydrogels.

We report the synthesis and characterization of hydroxycancrinite zeolite nanorods by a simple hydrothermal treatment of aluminosilicate hydrogels at high concentrations of precursors without the use of structure-directing agents. Transmission electron microscopy (TEM) analysis reveals that cancrinite nanorods, with lengths of 200-800 nm and diameters of 30-50 nm, exhibit a hexagonal morphology and are elongated along the crystallographic c direction. The powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) and TEM studies revealed sequential events of hydrogel formation, the formation of aggregated sodalite nuclei, the conversion of sodalite to cancrinite and finally the gro…

research product

Spectroelectrochemistry of cytochrome c and azurin immobilized in nanoporous antimony-doped tin oxide

Stable immobilization of two redox proteins, cytochrome c and azurin, in a thin film of highly mesoporous antimony-doped tin oxide is demonstrated via UV-vis spectroscopic and electrochemical investigation.

research product

Preparation of Nanoporous MgAl2O4 by Combined Utilization of Sol-Gel Process and Combustion of Biorenewable Oil

ABSTRACTNanoporous MgAl2O4 particulates with high porosities were successfully prepared from sol-gel reactions, solvent exchange with castor oil and subsequent combustion and calcination at 700 °C. The products were crystalline and semitransparent. Changes in the metal precursor concentrations allowed control of pore volumes from 0.7 to 1.1 cm3/g and average pore sizes from 14 to 19 nm. The specific surface areas are about 200 m2/g regardless of the precursor concentrations. After heating at 1000 °C for 10 hours, the products kept about 70% of their original pore volume and about 60% of the original surface area. Heating at 1100 °C caused a drastic reduction of pore volume and surface area …

research product

Exploratory Synthesis of Low-Silica Nanozeolites through Geopolymer Chemistry

Nanozeolites are of great interest with the premise of their efficiency in traditional applications such as catalysis and separation, as well as their emerging applications including chemical sensors, medicine, and food industry. We report a new geopolymerization route for the synthesis of nanozeolites with different crystal structures by exploring the Na–Al–Si–H2O quaternary phase space under a mild hydrothermal condition. Nanostructured faujasite (FAU), cancrinite (CAN), and sodalite (SOD) zeolites with a crystallite size smaller than 40 nm were successfully produced from our exploration, as well as a submicron-sized Linde-Type A (LTA) zeolite. The transmission electron microscopy and nit…

research product