0000000000124268

AUTHOR

Akihito Okabe

Changes in the expression of cation-Cl- cotransporters, NKCC1 and KCC2, during cortical malformation induced by neonatal freeze-lesion.

Focal cortical malformations comprise a heterogeneous group of disturbances in brain development, often associated with intractable epilepsy. A focal freeze-lesion of cerebral cortex in newborn rat produces a cortical malformation that resembles human polymicrogyria, clinical conditions that results from abnormal neuronal migration. The change in GABAergic functions that occurs during early brain development is induced by an alteration in Cl(-) homeostasis and plays important roles in neocortical development by modulating such events as laminar organization and synaptogenesis. We therefore investigated the relationship between pathogenesis of polymicrogyria and ontogeny of Cl(-) homeostasis…

research product

Allopregnanolone augments epileptiform activity of an in-vitro mouse hippocampal preparation in the first postnatal week.

Abstract In the immature brain the neurotransmitter γ-amino butyric acid (GABA) mediates a membrane depolarization and can contribute to both, inhibition and excitation. Therefore the consequences of a positive modulation of GABA(A) receptors by neurosteroids on epileptiform activity are hard to predict. In order to analyze whether neurosteroids attenuate or exaggerate epileptiform activity in the immature brain, we investigated the effect of the neurosteroid allopregnanolone on epileptiform activity in an in-toto hippocampus preparation of early postnatal mice (postnatal days 4–7) using field potential recordings. These in-vitro experiments revealed that 0.5 μmol/L allopregnanolone had no …

research product

Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus

While the expression of glycine receptors in the immature hippocampus has been shown, no information about the role of glycine receptors in controlling the excitability in the immature CNS is available. Therefore, we examined the effect of glycinergic agonists and antagonists in the CA3 region of an intact corticohippocampal preparation of the immature (postnatal days 4-7) rat using field potential recordings. Bath application of 100 μM taurine or 10 μM glycine enhanced the occurrence of recurrent epileptiform activity induced by 20 μM 4-aminopyridine in low Mg(2+) solution. This proconvulsive effect was prevented by 3 μM strychnine or after incubation with the loop diuretic bumetanide (10 …

research product

Kinetic Properties of Cl−Uptake Mediated by Na+-Dependent K+-2Cl−Cotransport in Immature Rat Neocortical Neurons

GABA, the main inhibitory neurotransmitter in the adult nervous system, evokes depolarizing membrane responses in immature neurons, which are crucial for the generation of early network activity. Although it is well accepted that depolarizing GABA actions are caused by an elevated intracellular Cl−concentration ([Cl−]i), the mechanisms of Cl−accumulation in immature neurons are still a matter of debate. Using patch-clamp, microfluorimetric, immunohistochemical, and molecular biological approaches, we studied the mechanism of Cl−uptake in Cajal-Retzius (CR) cells of immature [postnatal day 0 (P0) to P3] rat neocortex. Gramicidin-perforated patch-clamp and 6-methoxy-N-ethylquinolinium-microfl…

research product

Cl−uptake promoting depolarizing GABA actions in immature rat neocortical neurones is mediated by NKCC1

GABA is the principal inhibitory neurotransmitter in the mature brain, but during early postnatal development the elevated [Cl−]i in immature neocortical neurones causes GABAA receptor activation to be depolarizing. The molecular mechanisms underlying this intracellular Cl− accumulation remain controversial. Therefore, the GABA reversal potential (EGABA) or [Cl−]i in early postnatal rat neocortical neurones was measured by the gramicidin-perforated patch-clamp method, and the relative expression levels of the cation−Cl− cotransporter mRNAs (in the same cells) were examined by semiquantitative single-cell multiplex RT-PCR to look for statistical correlations with [Cl−]i. The mRNA expression …

research product

Cellular Mechanisms of Subplate-Driven and Cholinergic Input-Dependent Network Activity in the Neonatal Rat Somatosensory Cortex

Early coordinated network activity promotes the development of cortical structures. Although these early activity patterns have been recently characterized with respect to their developmental, spatial and dynamic properties, the cellular mechanisms by which specific neuronal populations trigger coordinated activity in the neonatal cerebral cortex are still poorly understood. Here we characterize the cellular and molecular processes leading to generation of network activity during early postnatal development. We show that the somatosensory cortex of newborn rats expresses cholinergic-driven calcium transients which are synchronized within the deeply located subplate. Correspondingly, endogen…

research product

Homogenous glycine receptor expression in cortical plate neurons and cajal-retzius cells of neonatal rat cerebral cortex

Glycinergic membrane responses have been described in cortical plate neurons (CPn) and Cajal-Retzius cells (CRc) during early neocortical development. In order to elucidate the functional properties and molecular identity of glycine receptors in these two neuronal cell types, we performed whole-cell patch-clamp recordings and subsequent single-cell multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) analyses on visually identified neurons in tangential and coronal slices as well as in situ hybridizations of coronal slices from neonatal rat cerebral cortex (postnatal days 0-4). In both CPn and CRc the glycinergic agonists glycine, beta-alanine and taurine induced inward curren…

research product

Glycine Receptors Mediate Excitation of Subplate Neurons in Neonatal Rat Cerebral Cortex

The development of the cerebral cortex depends on genetic factors and early electrical activity patterns that form immature neuronal networks. Subplate neurons (SPn) are involved in the construction of thalamocortical innervation, generation of oscillatory network activity, and in the proper formation of the cortical columnar architecture. Because glycine receptors play an important role during early corticogenesis, we analyzed the functional consequences of glycine receptor activation in visually identified SPn in neocortical slices from postnatal day 0 (P0) to P4 rats using whole cell and perforated patch-clamp recordings. In all SPn the glycinergic agonists glycine, β-alanine, and taurin…

research product