0000000000124488
AUTHOR
Sebastian Wintz
Erratum: “Nanoscale x-ray imaging of spin dynamics in yttrium iron garnet” [J. Appl. Phys. 126, 173909 (2019)]
Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths
In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturisation potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagati…
Nanoscale X-Ray Imaging of Spin Dynamics in Yttrium Iron Garnet
Time-resolved scanning transmission x-ray microscopy (TR-STXM) has been used for the direct imaging of spin wave dynamics in thin film yttrium iron garnet (YIG) with spatial resolution in the sub 100 nm range. Application of this x-ray transmission technique to single crystalline garnet films was achieved by extracting a lamella (13x5x0.185 $\mathrm{\mu m^3}$) of liquid phase epitaxy grown YIG thin film out of a gadolinium gallium garnet substrate. Spin waves in the sample were measured along the Damon-Eshbach and backward volume directions of propagation at gigahertz frequencies and with wavelengths in a range between 100~nm and 10~$\mathrm{\mu}$m. The results were compared to theoretical …
Direct observation of coherent magnons with suboptical wavelengths in a single crystalline ferrimagnetic insulator
In the field of magnetism, spin waves are a subject of great interest for fundamental and application-oriented research. Time-resolved scanning transmission x-ray microscopy, a technique that allows for direct spin-wave imaging below the optical resolution limit, is usually limited to thin layers deposited on x-ray transparent membranes. Here, the authors report on a preparation routine that makes single-crystalline materials accessible to this powerful technique. The latter is subsequently implemented on the ferrimagnetic insulator yttrium iron garnet, where spin waves down to 100-nm wavelength are observed.
Direct imaging of high frequency multimode spin wave propagation in cobalt iron waveguides using X ray microscopy beyond 10 GHz
Spin Wave Emission from Vortex Cores under Static Magnetic Bias Fields
We studied the influence of a static in-plane magnetic field on the alternating-field-driven emission of nanoscale spin waves from magnetic vortex cores. Time-resolved scanning transmission X-ray microscopy was used to image spin waves in disk structures of synthetic ferrimagnets and single ferromagnetic layers. For both systems, it was found that an increasing magnetic bias field continuously displaces the wave-emitting vortex core from the center of the disk toward its edge without noticeably altering the spin-wave dispersion relation. In the case of the single-layer disk, an anisotropic lateral expansion of the core occurs at higher magnetic fields, which leads to a directional rather th…