0000000000124490
AUTHOR
Georg Dieterle
Erratum: “Nanoscale x-ray imaging of spin dynamics in yttrium iron garnet” [J. Appl. Phys. 126, 173909 (2019)]
Coherent Excitation of Heterosymmetric Spin Waves with Ultrashort Wavelengths
In the emerging field of magnonics, spin waves are foreseen as signal carriers for future spintronic information processing and communication devices, owing to both the very low power losses and a high device miniaturisation potential predicted for short-wavelength spin waves. Yet, the efficient excitation and controlled propagation of nanoscale spin waves remains a severe challenge. Here, we report the observation of high-amplitude, ultrashort dipole-exchange spin waves (down to 80 nm wavelength at 10 GHz frequency) in a ferromagnetic single layer system, coherently excited by the driven dynamics of a spin vortex core. We used time-resolved x-ray microscopy to directly image such propagati…
Nanoscale X-Ray Imaging of Spin Dynamics in Yttrium Iron Garnet
Time-resolved scanning transmission x-ray microscopy (TR-STXM) has been used for the direct imaging of spin wave dynamics in thin film yttrium iron garnet (YIG) with spatial resolution in the sub 100 nm range. Application of this x-ray transmission technique to single crystalline garnet films was achieved by extracting a lamella (13x5x0.185 $\mathrm{\mu m^3}$) of liquid phase epitaxy grown YIG thin film out of a gadolinium gallium garnet substrate. Spin waves in the sample were measured along the Damon-Eshbach and backward volume directions of propagation at gigahertz frequencies and with wavelengths in a range between 100~nm and 10~$\mathrm{\mu}$m. The results were compared to theoretical …
Ptychographic imaging and micromagnetic modeling of thermal melting of nanoscale magnetic domains in antidot lattices
CA extern Antidot lattices are potential candidates to act as bit patterned media for data storage as they are able to trap nanoscale magnetic domains between two adjacent holes. Here, we demonstrate the combination of micromagnetic modeling and x-ray microscopy. Detailed simulation of these systems can only be achieved by micromagnetic modeling that takes thermal effects into account. For this purpose, a Landau-Lifshitz-Bloch approach is used here. The calculated melting of magnetic domains within the antidot lattice is reproduced experimentally by x-ray microscopy. Furthermore, we compare conventional scanning transmission x-ray microscopy with resolution enhanced ptychography. Hence, we …