0000000000125596
AUTHOR
O. Kortlüke
Kinetic model for surface reconstruction
Institut fu ¨r Physikalische und Theoretische Chemie, Technische Universitat Braunschweig, Hans-Sommer-Strase 10,38106 Braunschweig, Germany~Received 7 December 2001; published 25 July 2002!A microscopic kinetic model for the ab @e.g., hex131 for Pt~100! and 132131 for Pt~110!#surface reconstruction is investigated by means of the mean field approximation and Monte Carlo simulations.It considers homogeneous phase nucleation that induces small surface phase defects. These defects can grow ordecline via phase border propagation in dependence on the chemical coverage by an adsorbate A ~CO!.Anasymmetry in the adsorbate surface diffusion from one surface phase to the other gives rise to two criti…
Global Synchronization via Homogeneous Nucleation in Oscillating Surface Reactions
The mechanism leading to globally synchronized oscillations in the $\mathrm{CO}+{\mathrm{O}}_{2}/\mathrm{Pt}\left(110\right)$ reaction system is investigated by means of Monte Carlo simulations. The model considers the reconstruction of the surface via phase border propagation and spontaneous phase nucleation. The reason for global oscillations turns out to be the spontaneous phase nucleation. This nucleation, which is modeled as a weak noise process, results in a random creation of dynamic defects and leads to global synchronization via stochastic resonance. The mechanism of global coupling via the gas phase, as it is proposed to date, does not occur.
Oscillation Phenomena Leading to Chaos in a Stochastic Surface Reaction Model
A microscopic lattice gas model for the $\mathrm{CO}+\mathrm{NO}$ reaction on Pt(100) is studied by means of Monte Carlo simulations. It shows different kinetical phenomena such as steady state reaction, damped, regular, and irregular oscillations, as well as a transition into chaotical behavior via the Feigenbaum route. Because of its small number of parameters, each with a specific physical meaning, it enables the investigation of the whole parameter regime leading to a deeper insight to the mechanisms which create the oscillations and chaotical behavior.
Comment on "surface restructuring, kinetic oscillations, and chaos in heterogeneous catalytic reactions".
In a recent article Zhdanov studied the oscillating $\mathrm{NO}+{\mathrm{H}}_{2}$ reaction on the Pt(100) single-crystal surface [V. P. Zhdanov, Phys. Rev. E 59, 6292 (1999)]. We have scrutinized his model and found fundamental errors in the chemical modeling, in the modeling of the surface reconstruction and in the simulation procedure itself.
Forced oscillations in a self-oscillating surface reaction model
A microscopic lattice gas model for the catalytic CO + O2 reaction on Pt(110) subject to external periodic forcing is studied by means of cellular automaton simulations. Harmonic resonance, subharmonic and superharmonic entrainment, quasiperiodic as well as chaotic behavior are among the observed phenomena in this model when the gas phase concentration of CO as an external control parameter is periodically varied and interacts with the self-oscillating reaction system.