0000000000125655
AUTHOR
Pascal Krautscheid
Determination of fine magnetic structure of magnetic multilayer with quasi antiferromagnetic layer by using polarized neutron reflectivity analysis
We carried out polarized neutron reflectivity (PNR) analysis to determine the fine magnetic structure of magnetic multilayers with quasi-antiferromagnetic (quasi-AFM) layers realized by 90-deg coupling using two Co90Fe10 layers, and quantitatively evaluated the magnetization of quasi-AFM layers. Two types of samples with different buffer layers, Ru buffer and a NiFeCr buffer, were investigated and the average angles between the respective magnetization of the two Co90Fe10 layers were estimated to be +/− 39 degrees and +/− 53 degrees. In addition, less roughness was found in the NiFeCr buffer sample resulting stronger 90-deg coupling. A perfect quasi-AFM is expected to be realized by a flat …
Direct observation of spin diffusion enhanced nonadiabatic spin torque effects in rare-earth-doped permalloy
The relation between the nonadiabaticity parameter $\ensuremath{\beta}$ and the damping parameter $\ensuremath{\alpha}$ is investigated in permalloy-based microdisks. In order to determine $\ensuremath{\beta}$, high-resolution imaging of the current-induced vortex-core displacement is performed using scanning electron microscopy with polarization analysis. The materials properties of the films are varied via rare-earth Dy doping, leading to a greatly enhanced damping, while retaining the same spin configuration for the confined vortex state. A clear trend to much higher nonadiabaticity values is seen for the higher doping levels and an averaged value of $\ensuremath{\beta}=(0.29\ifmmode\pm\…
Quasi-antiferromagnetic multilayer stacks with 90 degree coupling mediated by thin Fe oxide spacers
We fabricated quasiantiferromagnetic (quasi-AFM) layers with alternating antiparallel magnetization in the neighboring domains via 90° magnetic coupling through an Fe-O layer. We investigated the magnetic properties and the relationship between the magnetic domain size and the 90° magnetic coupling via experiments and calculations. Two types of samples with a Ru buffer and a (Ni80Fe20)Cr40 buffer were prepared, and we found that with the NiFeCr buffer, the sample has a flatter Fe-O layer, leading to stronger 90° magnetic coupling and a smaller domain size compared with the Ru buffer sample. This trend is well explained by the bilinear and biquadratic coupling coefficients, A12 and B12, in L…
Development of a scanning electron microscopy with polarization analysis system for magnetic imaging with ns time resolution and phase-sensitive detection.
Scanning electron microscopy with polarization analysis is a powerful lab-based magnetic imaging technique offering simultaneous imaging of multiple magnetization components and a very high spatial resolution. However, one drawback of the technique is the long required acquisition time resulting from the low inherent efficiency of spin detection, which has limited the applicability of the technique to certain quasi-static measurement schemes and materials with high magnetic contrast. Here we demonstrate the ability to improve the signal-to-noise ratio for particular classes of measurements involving periodic excitation of the magnetic structure via the implementation of a digital phase-sens…
Domain Wall Spin Structures in Mesoscopic Fe Rings probed by High Resolution SEMPA
We present a combined theoretical and experimental study of the energetic stability and accessibility of different domain wall spin configurations in mesoscopic magnetic iron rings. The evolution is investigated as a function of the width and thickness in a regime of relevance to devices, while Fe is chosen as a material due to its simple growth in combination with attractive magnetic properties including high saturation magnetization and low intrinsic anisotropy. Micromagnetic simulations are performed to predict the lowest energy states of the domain walls, which can be either the transverse or vortex wall spin structure, in good agreement with analytical models, with further simulations …