Severity-Related Changes of Bronchial Microbiome in Chronic Obstructive Pulmonary Disease
ABSTRACT Bronchial colonization by potentially pathogenic microorganisms (PPMs) is often demonstrated in chronic obstructive pulmonary disease (COPD), but culture-based techniques identify only a portion of the bacteria in mucosal surfaces. The aim of the study was to determine changes in the bronchial microbiome of COPD associated with the severity of the disease. The bronchial microbiome of COPD patients was analyzed by 16S rRNA gene amplification and pyrosequencing in sputum samples obtained during stable disease. Seventeen COPD patients were studied (forced expiratory volume in the first second expressed as a percentage of the forced vital capacity [FEV 1 %] median, 35.0%; interquartile…
The respiratory virome in chronic obstructive pulmonary disease
Aim: To characterize the respiratory virome in moderate/severe chronic obstructive pulmonary disease (COPD) patients using metagenomics, with healthy subjects as the reference. Patients & Methods: Sputum COPD samples were collected during stability and exacerbations with negative usual-care microbiologic analysis. Results: Eukaryotic viruses from the Anelloviridae, Herpesviridae and Retroviridae families and phages from the Shiphoviridae family were commonly found in COPD, and the respiratory virome in stability and noninfectious exacerbations showed a substantial similarity. DNA viruses with the highest relative abundance in COPD are Anelloviridae. Conclusion: These results support a …
Chronic Obstructive Pulmonary Disease Lung Microbiota Diversity May Be Mediated by Age or Inhaled Corticosteroid Use
We read with great interest the paper by Garcia-Nunez et al. ([1][1]) published in the December 2014 issue of this journal, where the authors investigated the sputum microbiota of chronic obstructive pulmonary disease (COPD) patients. The authors found decreased microbial diversity in patients with
Clostridium difficile heterogeneously impacts intestinal community architecture but drives stable metabolome responses
Clostridium difficile-associated diarrhoea (CDAD) is caused by C. difficile toxins A and B and represents a serious emerging health problem. Yet, its progression and functional consequences are unclear. We hypothesised that C. difficile can drive major measurable metabolic changes in the gut microbiota and that a relationship with the production or absence of toxins may be established. We tested this hypothesis by performing metabolic profiling on the gut microbiota of patients with C. difficile that produced (n=6) or did not produce (n=4) toxins and on non-colonised control patients (n=6), all of whom were experiencing diarrhoea. We report a statistically significant separation (P-value o0…
Functional Metagenomics of the Bronchial Microbiome in COPD
Altres ajuts: Sociedad Catalana de Neumología; Fundació Catalana de Neumología; Fundació Parc Tauli; Marató de TV3; Sociedad Española de Neumología y Cirugía Torácica; Fundación Menarini; Generalitat Valenciana (Spain) [Prometeo/2009/092] i Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES) The course of chronic obstructive pulmonary disease (COPD) is frequently aggravated by exacerbations, and changes in the composition and activity of the microbiome may be implicated in their appearance. The aim of this study was to analyse the composition and the gene content of the microbial community in bronchial secretions of COPD patients in both stability and exacerbati…
LSC Abstract – Functional metagenomics of respiratoy microbiome in exacerbated COPD
Background: The course of COPD is frequently aggravated by exacerbations. New molecular techniques have suggested that many bacterial groups, not only the common COPD pathogens, could trigger the exacerbations. Objective: to analyze the microbial community and the gene content of samples obtained during stability and exacerbation of COPD patients. Method: 16S rRNA was pyrosequenced to obtain the taxonomic information. The metabolic information was obtained with the Metagenomics RAST server (MG-RAST) with KEGG database. Results: 8 severe COPD patients were included. At genus level, 68 different OTUs were found. No significant differences in the relative abundance of any of the detected gener…