0000000000128896
AUTHOR
H. Kettunen
Proton irradiation-induced reliability degradation of SiC power MOSFET
The effect of 53 MeV proton irradiation on the reliability of silicon carbide power MOSFETs was investigated. Post-irradiation gate voltage stress was applied and early failures in time-dependent dielectric breakdown (TDDB) test were observed for irradiated devices. The applied drain voltage during irradiation affects the degradation probability observed by TDDB tests. Proton-induced single event burnouts (SEB) were observed for devices which were biased close to their maximum rated voltage. The secondary particle production as a result of primary proton interaction with the device material was simulated with the Geant4-based toolkit. peerReviewed
Gamma-ray spectroscopy of191,193Bi
Very neutron-deficient Bi-191,Bi-193 nuclei have been studied at the Department of Physics, University of Jyvaskyla, Finland (JYFL) employing the Jurosphere II Ge-detector array coupled to the gas-filled recoil separator RITU and different tagging techniques. For the first time in heavy odd-mass nuclei, a collective band (oblate) is identified above the 2p-1h (1/2(+)) proton intruder state in Bi-191. In both Bi-191,Bi-193, a band based on isomeric 13/2(+) state has been observed and oblate deformation for this state has been deduced. ispartof: Acta Physica Polonica B vol:32 issue:3 pages:1019-1023 ispartof: location:POLAND, ZAKOPANE status: published
Towards higher sensitivity at the RITU focal plane
The recently reconstructed focal plane detector system for the gas-filled recoil separator RITU was used to observe a new proton emitter 164Ir. The nuclide was produced via the p5n fusion evaporation channel using a 64Zn beam on a 106Cd target. The proton energy Ep = 1817(9) keV and half-life T1/2 = 113+62-30 μ s were used to characterize the decaying state to be [π h11/2 ν f7/2]9+. The new focal plane detector system and the results of the proton decay studies will be discussed. peerReviewed
γ decay of excited states in 198Rn identified using correlated radioactive decay
The low-lying level structure of the neutron-deficient isotope 198Rn has been studied for the first time, using the 166Er(36Ar,4n) reaction at a beam energy of 175 MeV. Evaporation residues were selected using an in-flight gas-filled separator, RITU, and implanted at the focal plane into a 16-element position-sensitive, passivated ion-implanted planar silicon detector. Prompt γ rays in 198Rn were observed at the target position using the JUROSPHERE array of 24 Compton-suppressed germanium detectors, and were identified by the subsequent radioactive decay of associated recoiling ions in the silicon detector. Isotopic assignments of the nuclei produced were made on the basis of the energy and…
Observation ofK=1/2octupole deformed bands in227Th
High-spin states in 227Th have been populated using the reaction 226Ra(α,3n)227Th at a bombarding energy of 33 MeV. The high-spin rotational structures of this nucleus have been refined and extended. In addition, the linking of these structures with the low-spin states known from 231U α decay has allowed a comprehensive decay scheme of this nucleus to be assembled for the first time. Four previously known rotational bands are interpreted as Coriolis coupled Kπ=1/2+ and Kπ=1/2− bands, in agreement with predictions using a reflection-asymmetric mean field approach. The determination of decoupling parameters for these bands is consistent with the a(Kπ=1/2+)=−a(Kπ=1/2−) rigid octupole rotor exp…
Alpha decay studies of translead nuclei at the proton drip line
Extensive α-decay studies of the very neutron deficient isotopes 191Po, 195Rn, and 196Rn have been performed at the RITU gas-filled recoil separator. The recoil-α–(α) correlation technique and the α–γ coincidence technique have been utilized to unambiguously connect the observed α-decays to proper nuclei. Illustrative examples on how the α-decay can yield spectroscopic information on the nuclei studied will be presented. peerReviewed
Characteristics of segmented super clover detector in close geometry decay measurements
Characteristics of the segmented Super Clover germanium detector response in close geometries have been studied. Results obtained with localising hit pattern recognition are compared with results from add-back and individual crystal analysis. The detector has been used at the focal plane of a gas filled recoil separator to detect isomeric gamma-rays from the nuclei produced in the 150Sm(42Ca,4n)188Pb reaction. Coincidence data from the detector was analysed and the level scheme below the 1.2 μ s isomeric state in 188Pb could be deduced. peerReviewed
Effect of 20 MeV Electron Radiation on Long Term Reliability of SiC Power MOSFETs
The effect of 20 MeV electron radiation on the lifetime of the silicon carbide power MOSFETs was investigated. Accelerated constant voltage stress (CVS) was applied on the pristine and irradiated devices and time-to-breakdown ( T BD ) and charge-to-breakdown ( Q BD ) of gate oxide were extracted and compared. The effect of electron radiation on the device lifetime reduction can be observed at lower stress gate-to-source voltage ( V GS ) levels. The models of T BD and Q BD dependence on the initial gate current ( I G0 ) are proposed which can be used to describe the device breakdown behaviour. peerReviewed
Shape coexistence in183Tl
Recoil Isomer Tagging on Proton-Rich Odd–Odd N=77 Isotones 142Tb and 144Ho
The isomeric structure of the N=77 isotones 14265Tb and 14467Ho have been studied with the 92Mo(54Fe, xpn) fusion evaporation reaction at the University of Jyväskylä. The Jurospehere II germanium array was employed in conjunction with the RITU gas filled recoil separator. The feeding and decay of a 500(20) ns isomeric state in 144Ho has been established for the first time together with states built upon the known 15 μs isomer in 142Tb. The behavior of these new structures above the isomers suggest that they are low deformation configurations which display signs of triaxiality. peerReviewed
Direct Ionization Impact on Accelerator Mixed-Field Soft Error Rate
We investigate, through measurements and simulations, the possible direct ionization impact in the accelerator soft error rate, not considered in standard qualification approaches. Results show that, for a broad variety of state-of-the art commercial components considered in the 65 nm to 16 nm technological range, indirect ionization is still expected to dominate the overall soft-error rate in the accelerator mixed-field. However, the derived critical charges of the most sensitive parts, corresponding to ∼0.7 fC, are expected to be at the limit of rapid direct ionization dominance and soft-error increase. peerReviewed
Probing structures of exotic heavy nuclei
The JYFL gas-filled recoil separator RITU, combined with Ge detector arrays, has successfully been employed in Recoil-Decay-Tagging (RDT) experiments in order to probe, for the first time, structures of several very neutron deficient heavy nuclei. In this contribution new data for light even-mass Hg, Pb and Po nuclei are shown and discussed. peerReviewed
The Structure of Heavy Octupole and Superheavy Quadrupole Deformed Nuclei
We report here experimental attempts to determine the sign of the electric dipole moment (relative to the electric octupole moment) in the octupole deformed nucleus 226Ra. Sensitivity to this quantity is observed in the measured yields of γ-ray transitions following very low energy Coulomb excitation. Recent progress is also reported in the development of new spectroscopic techniques that promise to elucidate the structure of deformed superheavy nuclei in the region of 254No. The 4+ → 2+ transition in 254No, as well as higher spin transitions, has been identified using recoil-tagged conversion electron spectroscopy. peerReviewed
High K bands in mid-supershell nuclei
The spectrum of prompt conversion electrons emitted by excited 254No nuclei has been measured, revealing discrete lines arising from transitions within the ground state band. A striking feature is a broad distribution that peaks near 100 keV and comprises high multiplicity electron cascades, probably originating from M1 transitions within rotational bands built on high K states. Evidence for the existence of isomeric states in 254No is presented. peerReviewed
Studies of 225,226U alpha decay chains
Studies of 225,226U α -decay chains produced via heavy ion induced fusion reactions of 22Ne + 208Pb → 230U and of 18O + 208Pb → 226Th were carried out using the JYFL gas-filled magnetic recoil separator RITU. The data obtained for α -decays of 225,226U, 221,222Th, 218Ra and 213Rn concerning their α -particle energies, half-lives and α -decay fine structures are compared to previous investigations. peerReviewed
Decay and in-beam studies of neutron-deficient Po and Ra isotopes at JYFL
An extensive program to study the production, decay properties, and nuclear structure of very neutron-deficient polonium and radium nuclei is underway at the Department of Physics, University of Jyvaskyla, Finland (JYFL). The main tools used in these studies are the gas-filled recoil separator RITU and various germanium gamma-ray arrays. In the course of these studies, among others the following new isotopes have been produced: Ra-204, Ra-203, and Ra-202. Isomeric alpha decaying states have been discovered in Ra-203 and Po-191. Fine structure in the decay of Po-192 to the oblate and prolate band heads in Pb-188 has been observed. In-beam gamma-ray spectra have been, for the first time, meas…
High-spin intruder band in $^{107}$In
High-spin states in the neutron deficient nucleus $^{107}$In were studied via the $^{58}$Ni($^{52}$Cr, 3p) reaction. In-beam $\gamma$ rays were measured using the JUROGAM detector array. A rotational cascade consisting of ten $\gamma$-ray transitions which decays to the 19/2$^{+}$ level at 2.002 MeV was observed. The band exhibits the features typical for smooth terminating bands which also appear in rotational bands of heavier nuclei in the A$\sim$100 region. The results are compared with Total Routhian Surface and Cranked Nilsson-Strutinsky calculations.
The influence of quasineutron configurations on 161Ta and nearby odd-A Nuclei
Several strongly coupled bands in the neutron‐deficient nucleus 161Ta have been identified and quasiparticle configuration assignments have been made on the basis of rotational alignments and cranked shell model calculations. The level scheme elucidated for 161Ta highlights the competition between the ν(h9/2) and ν(i13/2) orbitals to form the yrast spectrum. The band structures in 161Ta also provide new insights into the structural features of other heavy odd‐A nuclei populated with much lower reaction cross sections in this region at the proton drip line.