0000000000130607

AUTHOR

Mingxia Song

showing 6 related works from this author

Surface plasmon propagation in metal nanowires

2012

Plasmonic circuitry is considered as a promising solution-effectivetechnology for miniaturizing and integrating the next generation ofoptical nano-devices. The realization of a practical plasmonic circuitry strongly depends on the complete understanding of the propagation properties of two key elements: surface plasmons and electrons. The critical part constituting the plasmonic circuitry is a waveguide which can sustain the two information-carriers simultaneously. Therefore, we present in this thesis the investigations on the propagation of surface plasmons and the co-propagation of surface plasmons and electrons in single crystalline metal nanowires. This thesis is therefore divided into …

Bias modulation[SPI.OTHER] Engineering Sciences [physics]/OtherWave vectorPlasmonic circuitryPropagation lengthElectrical failureSEM contaminationEffective indexPas de mot-clé en françaisLeaky radiation microscopyCo-propagation[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]Surface plasmonPentagonal single crystalline nanowireContacted nanowire
researchProduct

Evaluating plasmonic transport in current-carrying silver nanowires

2013

cited By 1; International audience; Plasmonics is an emerging technology capable of simultaneously transporting a plasmonic signal and an electronic signal on the same information support1,2,3. In this context, metal nanowires are especially desirable for realizing dense routing networks4. A prerequisite to operate such shared nanowire-based platform relies on our ability to electrically contact individual metal nanowires and efficiently excite surface plasmon polaritons5 in this information support. In this article, we describe a protocol to bring electrical terminals to chemically-synthesized silver nanowires6 randomly distributed on a glass substrate7. The positions of the nanowire ends …

Optics and PhotonicsSilverMaterials scienceGeneral Chemical EngineeringNanowireMetal Nanoparticles02 engineering and technology010402 general chemistry[ CHIM ] Chemical Sciences01 natural sciencesGeneral Biochemistry Genetics and Molecular Biology[CHIM]Chemical SciencesSurface plasmon resonancePlasmonGeneral Immunology and MicrobiologyNanowiresbusiness.industryPhysicsGeneral NeuroscienceSurface plasmonElectric ConductivityPlasmonic CircuitrySurface Plasmon Resonance021001 nanoscience & nanotechnology0104 chemical sciencesNanolithographyResistOptoelectronics0210 nano-technologybusinessLocalized surface plasmon
researchProduct

Electron-induced limitation of surface plasmon propagation in silver nanowires

2013

Plasmonic circuitry is considered as a promising solution-effective technology for miniaturizing and integrating the next generation of optical nano-devices. A key element is the shared metal network between electrical and optical information enabling an efficient hetero-integration of an electronic control layer and a plasmonic data link. Here, we investigate to what extend surface plasmons and current-carrying electrons interfere in such a shared circuitry. By synchronously recording surface plasmon propagation and electrical output characteristics of single chemically-synthesized silver nanowires we determine the limiting factors hindering the co-propagation of electrical current and sur…

Materials scienceNanostructureFOS: Physical sciencesPhysics::OpticsBioengineering02 engineering and technologyElectron01 natural sciences[ CHIM ] Chemical SciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesPhysics::Atomic and Molecular Clusters[CHIM]Chemical SciencesGeneral Materials ScienceElectrical and Electronic Engineering010306 general physicsNanoscopic scalePlasmonElectronic circuitCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryMechanical EngineeringSurface plasmonPlasmonic CircuitryGeneral Chemistry021001 nanoscience & nanotechnologyMechanics of MaterialsOptoelectronicsElectric current0210 nano-technologybusinessOptics (physics.optics)Physics - Optics
researchProduct

Influence of an Electron Beam Exposure on the Surface Plasmon Resonance of Gold Nanoparticles

2013

Electron beam imaging is a common technique used for characterizing the morphology of plasmonic nanostructures. During the imaging process, the electron beam interacts with traces of organic material in the chamber and produces a well-know layer of amorphous carbon over the specimen under investigation. In this paper, we investigate the effect of this carbon adsorbate on the spectral position of the surface plasmon in individual gold nanoparticles as a function of electron exposure dose. We find an optimum dose for which the plasmonic response of the nanoparticle is not affected by the imaging process. The final publication is available at link.springer.com

PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industrySurface plasmonBiophysicsFOS: Physical sciencesNanoparticle02 engineering and technologyElectron010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistry0104 chemical sciencesAmorphous carbonColloidal goldMesoscale and Nanoscale Physics (cond-mat.mes-hall)Cathode rayOptoelectronicsSurface plasmon resonance0210 nano-technologybusinessPlasmonBiotechnologyPlasmonics
researchProduct

Silencing and enhancement of second-harmonic generation in optical gap antennas

2012

International audience; Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a…

Electromagnetic fieldOptics and PhotonicsSurface PropertiesMetal NanoparticlesElectrons02 engineering and technology01 natural sciencesSignalOpticsElectromagnetic Fields0103 physical sciencesMaterials TestingNanotechnologyScattering RadiationComputer SimulationSurface plasmon resonance[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsLocal fieldPlasmonPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryElectromagnetic RadiationSecond-harmonic generationEquipment DesignModels Theoretical021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsFinite element methodNonlinear systemMicroscopy Electron ScanningOptoelectronics[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsGold0210 nano-technologybusiness
researchProduct

Imaging Symmetry-Selected Corner Plasmon Modes in Penta-Twinned Crystalline Ag Nanowires

2011

International audience; Using dual-plane leakage radiation microscopy, we investigate plasmon propagation in individual penta-twinned crystalline silver nanowires. By measuring the wavevector content of the light emitted in the substrate, we unambiguously determine the effective index and the losses of the mode propagating in these structures. The experimental results, in particular, the unexpectedly low effective index, reveal the direct influence of the nanowire crystallinity and pentagonal structure on the observed plasmon modes. By analogy with molecular orbitals of similar symmetry, the plasmon modes are also determined numerically in good agreement with the observed values. We further…

Materials scienceNanowireGeneral Physics and AstronomyPhysics::Optics02 engineering and technologySubstrate (electronics)01 natural sciencesMolecular physicsCondensed Matter::Materials ScienceOptics0103 physical sciencesMicroscopyGeneral Materials ScienceWave vectorMolecular orbital[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsPlasmonbusiness.industrySurface plasmonGeneral Engineering021001 nanoscience & nanotechnology[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics0210 nano-technologybusinessLocalized surface plasmon
researchProduct