0000000000131586
AUTHOR
Teresa Climent
Cyclobutane Pyrimidine Photodimerization of DNA/RNA Nucleobases in the Triplet State
The photoinduced formation of cyclobutane pyrimidine dimers in the triplet excited state of the DNA/RNA pyrimidine nucleobases pairs has been studied at the CASPT2 level of theory. A stepwise mechanism through the triplet state of the homodimer is proposed for the pairs of nucleobases cytosine, thymine, and uracil involving a singlet−triplet crossing intermediary structure of biradical character representing the most favorable triplet state conformation of the nucleobases as found in the DNA environment. The efficiency of the mechanism will be modulated by two factors: the effectiveness of the triplet−triplet energy transfer process from a donor photosensitizer molecule, which relates to th…
Theoretical Insight into the Spectroscopy and Photochemistry of Isoalloxazine, the Flavin Core Ring
The electronic singlet-singlet and singlet-triplet electronic transitions of the isoalloxazine ring of the flavin core are studied using second-order perturbation theory within the framework of the CASPT2//CASSCF protocol. The main features of the absorption spectrum are computed at 3.09, 4.28, 4.69, 5.00, and 5.37 eV. The lowest singlet (S1) and triplet (T1) excited states are found to be both of pi character with a singlet-triplet splitting of 0.57 eV. On the basis of the analysis of the computed spin-orbit couplings and the potential energy hypersurfaces built for the relevant excited states, the intrinsic mechanism for photoinduced population of T1 is discussed. Upon light absorption, e…
On the intrinsic population of the lowest triplet state of uracil
Abstract From CASPT2//CASSCF quantum-chemical computations it is determined that the lowest triplet state of uracil can be efficiently populated from the initially activated singlet manifold through respective singlet–triplet crossings of the singlet state with the low-lying 3nπ∗ state at 4.6 eV and with the lowest 3ππ∗ state at 4.2 eV located along the minimum energy path of the low-lying 1ππ∗ state. Large spin–orbit coupling elements predict, in particular for the former case, efficient intersystem crossing processes. The wavelength dependence measured for the triplet quantum yield can be explained by the location of the singlet–triplet crossing regions.
Theoretical Analysis of the Excited States in Maleimide
The electronic excited states of maleimide have been studied using multiconfigurational second-order perturbation theory in its multistate formulation (MS-CASPT2) and extended atomic natural orbita...
The role of pyrimidine nucleobase excimers in DNA photophysics and photoreactivity
Abstract Quantum chemical studies using the accurate CASPT2//CASSCF procedure show that π-stacked interactions in biochromophores such as pyrimidine (Pyr) DNA/RNA nucleobases pairs yield excimer-like situations which behave as precursors of processes like charge transfer (CT) or photoreactivity and are the source of the emissive properties in DNA. Examples are the CT between adjacent DNA nucleobases in a strand of oligonucleotides and the photodimerization taking place in cytosine (C) pairs leading to cyclobutanecytosine (CBC) mutants. These processes take place through nonadiabatic photochemical mechanisms whose evolution is determined by the presence and accessibility of conical intersect…
Singlet-Triplet States Interaction Regions in DNA/RNA Nucleobase Hypersurfaces.
The present study provides new insight into the intrinsic mechanisms for the population of the triplet manifold in DNA nucleobases by determining, at the multiconfigurational CASSCF/CASPT2 level, the singlet-triplet states crossing regions and the main decay paths for their lowest singlet and triplet states after near-UV irradiation. The studied singlet-triplet interacting regions are accessible along the minimum energy path of the initially populated singlet bright (1)ππ* state. In particular, all five natural DNA/RNA nucleobases have, at the end of the main minimum energy path and near a conical intersection of the ground and (1)ππ* states, a low-energy, easily accessible, singlet-triplet…
Unified model for the ultrafast decay of pyrimidine nucleobases.
Ultrafast decay processes detected after absorption of UV radiation in gas-phase pyrimidine nucleobases uracil, thymine, and cytosine are ascribed to the barrierless character of the pathway along the low-lying 1(pipi*) hypersurface connecting the Franck-Condon region with an out-of-plane distorted ethene-like conical intersection with the ground state. Longer lifetime decays and low quantum yield emission are on the other hand related to the presence of a 1(pipi*) state planar minimum on the S1 surface and the barriers to access other conical intersections. A unified model for the three systems is established on the basis of accurate multiconfigurational CASPT2 calculations, whereas the ef…