0000000000131731

AUTHOR

Jasmin Preis

showing 5 related works from this author

Rigid Hyperbranched Polycarbonate Polyols from CO2 and Cyclohexene-Based Epoxides

2017

Hyperbranched, multifunctional polycarbonate polyols based on CO2, cyclohexene oxide (CHO), and the “inimer” (initiator–monomer) (4-hydroxymethyl)cyclohexene oxide (HCHO) were prepared in one-pot syntheses. The related linear poly(hydroxymethyl cyclohexene carbonate) structures based on protected HCHO and postpolymerization deprotection were also synthesized as model compounds. The content of hydroxyl functionalities was adjustable for both linear and hyperbranched terpolymer systems. All CO2/epoxide polymerizations were catalyzed by the (R,R)-(salcy)-Co(III)Cl complex. The polycarbonates obtained were comprehensively investigated using various 1D and 2D NMR techniques, SEC, FT-IR, UV–vis s…

Polymers and PlasticsIntrinsic viscosityOrganic ChemistryDispersityCyclohexeneEpoxide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryvisual_artPolymer chemistryMaterials Chemistryvisual_art.visual_art_mediumCopolymerOrganic chemistryHydroxymethylPolycarbonate0210 nano-technologyCyclohexene oxideMacromolecules
researchProduct

Rapid one-pot synthesis of tapered star copolymers via ultra-fast coupling of polystyryllithium chain ends

2019

Highly efficient stoichiometric coupling of sterically hindered polystyryllithium (PS-Li) chain ends was achieved using tetra[3-(chloro-dimethylsilyl)propyl]silane (TCDMSPS) as the linking agent. Based on the disparate reactivities of isoprene (I, rI = 11.0) and styrene (S, rS = 0.049) in the anionic copolymerization in nonpolar media, poly(isoprene0.5-grad-styrene0.5) (P(I0.5-grad-S0.5)) tapered 4-arm star copolymers were synthesized in only two steps. The tapered 4-arm star copolymers (Mtargetedw = 40 to 160 kg mol−1) were synthesized with high star functionalities f (Mw,star/Mw,arm = 3.68–3.98), low dispersity (Đ = 1.06–1.15) and minimal residual precursor content (2–8 wt%), avoiding fra…

Materials sciencePolymers and PlasticsOrganic ChemistryDispersitySize-exclusion chromatographyOne-pot synthesisBioengineering02 engineering and technologyNuclear magnetic resonance spectroscopy010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistrySilane0104 chemical sciencesStyrenechemistry.chemical_compoundchemistryPolymer chemistryCopolymerPolystyrene0210 nano-technologyPolymer Chemistry
researchProduct

Hyperbranched Polyols via Copolymerization of 1,2-Butylene Oxide and Glycidol: Comparison of Batch Synthesis and Slow Monomer Addition

2015

Hyperbranched poly(butylene oxide) polyols have been synthesized by multibranching anionic ring-opening copolymerization of 1,2-butylene oxide and glycidol. Systematic variation of the composition from 24 to 74% glycidol content resulted in a series of moderately distributed copolymers (Đ = 1.41–1.65, SEC), albeit with limited molecular weights in the solvent-free batch process in the range of 900–1300 g mol–1 (apparent Mn determined by SEC with PEG standards). In situ monitoring of the copolymerization kinetics by 1H NMR showed a pronounced compositional drift with respect to the monomer feed, indicating a strongly tapered microstructure caused by the higher reactivity of glycidol. In the …

Polymers and PlasticsChemistryComonomerOrganic ChemistryGlycidolOxide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundMonomerPolymer chemistryPEG ratioMaterials ChemistryCopolymerReactivity (chemistry)0210 nano-technologyGlass transitionMacromolecules
researchProduct

Multiarm Polycarbonate Star Polymers with a Hyperbranched Polyether Core from CO2 and Common Epoxides

2017

Multiarm star copolymers, consisting of hyperbranched poly(ethylene oxide) (hbPEO) or poly(butylene oxide) (hbPBO) polyether copolymers with glycerol branching points as a core, and linear aliphatic polycarbonate arms generated from carbon dioxide (CO2) and epoxide monomers, were synthesized via a “core-first” approach in two steps. First, hyperbranched polyether polyols were prepared by anionic copolymerization of ethylene oxide or 1,2-butylene oxide with 8–35% glycidol with molecular weights between 800 and 389,000 g·mol–1. Second, multiple arms were grown via immortal copolymerization of CO2 with propylene oxide or 1,2-butylene oxide using the polyether polyols as macroinitiators and (R,…

Polymers and PlasticsEthylene oxideOrganic ChemistryGlycidolOxideEpoxide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundMonomerchemistryvisual_artPolymer chemistryMaterials ChemistryCopolymervisual_art.visual_art_mediumOrganic chemistryPropylene oxidePolycarbonate0210 nano-technologyMacromolecules
researchProduct

Proton-Induced Multiple Changes of the Absorption and Fluorescence Spectra of Amino-Aza-Oligo(Phenylenevinylene)s

2008

Fluorescent dyes with a high sensitivity of their optical spectra towards changes of the environment were prepared via aldol condensation or Horner olefinations. The main chromophore is a quadrupolar N-substituted 1,4-distyrylbenzene which allows protonation and complexation at various positions resulting in a series of different and significant changes of the optical spectra. The sensitivity of the absorption and emission spectra on solvent polarity, acid, and cations is reported.

ProtonChemistrySolvatochromismProtonationChromophorePhotochemistryFluorescence spectraFluorescenceAtomic and Molecular Physics and OpticsAldol condensationsense organsEmission spectrumElectrical and Electronic EngineeringAbsorption (chemistry)Advances in Science and Technology
researchProduct