6533b7d3fe1ef96bd126130e
RESEARCH PRODUCT
Hyperbranched Polyols via Copolymerization of 1,2-Butylene Oxide and Glycidol: Comparison of Batch Synthesis and Slow Monomer Addition
Marius BauerIgor PerevyazkoHolger FreyJasmin PreisDaniel LeibigUlrike Kemmer-jonasJan Seiwertsubject
Polymers and PlasticsChemistryComonomerOrganic ChemistryGlycidolOxide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundMonomerPolymer chemistryPEG ratioMaterials ChemistryCopolymerReactivity (chemistry)0210 nano-technologyGlass transitiondescription
Hyperbranched poly(butylene oxide) polyols have been synthesized by multibranching anionic ring-opening copolymerization of 1,2-butylene oxide and glycidol. Systematic variation of the composition from 24 to 74% glycidol content resulted in a series of moderately distributed copolymers (Đ = 1.41–1.65, SEC), albeit with limited molecular weights in the solvent-free batch process in the range of 900–1300 g mol–1 (apparent Mn determined by SEC with PEG standards). In situ monitoring of the copolymerization kinetics by 1H NMR showed a pronounced compositional drift with respect to the monomer feed, indicating a strongly tapered microstructure caused by the higher reactivity of glycidol. In the case of slow monomer addition considerably higher apparent molecular weights up to 8500 g mol–1 were obtained (SEC). By alteration of the comonomer ratio, aqueous solubility of the hyperbranched copolymers could be tailored, resulting in well-defined cloud points between 20 and 84 °C. Glass transition temperatures betwe...
year | journal | country | edition | language |
---|---|---|---|---|
2015-12-23 | Macromolecules |