0000000000132187

AUTHOR

Stéphane Savary

Dehydroepiandrosterone Induction of the Abcd2 and Abcd3 Genes encoding peroxisomal ABC Transporters

Dehydroepiandrosterone (DHEA) is a peroxisome proliferator known to increase the expression of the genes encoding the peroxisomal s-oxidation enzymes in rodents. Using RT-PCR, we analysed the expression of the Abcd2 and Abcd3 genes encoding the peroxisomal ABC transporters ALDRP (ALD related protein) and PMP70 (70 kDa peroxisomal membrane protein) in primary cultures of rats hepatocytes treated with sulfated DHEA. We observed a time (12-72h) and dose (125-500μM) dependent increase in the expression of both genes.

research product

Evidence of oxidative stress in very long chain fatty acid--treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins.

X-linked adrenoleukodystrophy (X-ALD) and pseudo neonatal adrenoleukodystrophy (P-NALD) are neurodegenerative demyelinating diseases resulting from the functional loss of the peroxisomal ATP-binding cassette transporter D (ABCD1) and from single peroxisomal enzyme deficiency (Acyl-CoA oxidase1: ACOX1), respectively. As these proteins are involved in the catabolism of very long chain fatty acids (VLCFA: C24:0, C26:0), X-ALD and P-NALD patients are characterized by the accumulation of VLCFA in plasma and tissues. Since peroxisomes are involved in the metabolism of reactive oxygen species (ROS) and nitrogen species (RNS), we examined the impact of VLCFA on the oxidative status of 158N murine o…

research product

Fibrate induction of the adrenoleukodystrophy-related gene (ABCD2)

X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease due to a defect in the ABCD1 (ALD) gene. ABCD1, and the two close homologues ABCD2 (ALDR) and ABCD3 (PMP70), are genes encoding ATP-binding cassette half-transporters of the peroxisomal membrane. As overexpression of the ABCD2 or ABCD3 gene can reverse the biochemical phenotype of X-ALD (reduced beta-oxidation of very-long-chain fatty acids), pharmacological induction of these partially redundant genes may represent a therapeutic approach to X-ALD. We previously reported that the ABCD2 and ABCD3 genes could be strongly induced by fibrates, which are hypolipidaemic drugs and peroxisome-proliferators in rodents. We provide e…

research product

Thyroid hormone induction of the adrenoleukodystrophy-related gene (ABCD2).

X-linked adrenoleukodystrophy (X-ALD) is a demyelinating disorder associated with impaired very-long-chain fatty-acid (VLCFA) beta-oxidation caused by mutations in the ABCD1 (ALD) gene that encodes a peroxisomal membrane ABC transporter. ABCD2 (ALDR) displays partial functional redundancy because when overexpressed, it is able to correct the X-ALD biochemical phenotype. The ABCD2 promoter contains a putative thyroid hormone-response element conserved in rodents and humans. In this report, we demonstrate that the element is capable of binding retinoid X receptor and 3,5,3'-tri-iodothyronine (T3) receptor (TRbeta) as a heterodimer and mediating T3 responsiveness of ABCD2 in its promoter conte…

research product

A novel cell model to study the function of the adrenoleukodystrophy-related protein

X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder due to mutations in the ABCD1 (ALD) gene. ALDRP, the closest homolog of ALDP, has been shown to have partial functional redundancy with ALDP and, when overexpressed, can compensate for the loss-of-function of ALDP. In order to characterize the function of ALDRP and to understand the phenomenon of gene redundancy, we have developed a novel system that allows the controlled expression of the ALDRP-EGFP fusion protein (normal or non-functional mutated ALDRP) using the Tet-On system in H4IIEC3 rat hepatoma cells. The generated stable cell lines express negligible levels of endogenous ALDRP and doxycycline dosage-dependent lev…

research product

Flow Cytometric Analysis of the Expression Pattern of Peroxisomal Proteins, Abcd1, Abcd2, and Abcd3 in BV-2 Murine Microglial Cells

Microglial cells play important roles in neurodegenerative diseases including peroxisomal leukodystrophies. The BV-2 murine immortalized cells are widely used in the context of neurodegenerative researches. It is therefore important to establish the expression pattern of peroxisomal proteins by flow cytometry in these cells. So, the expression pattern of various peroxisomal transporters (Abcd1, Abcd2, Abcd3) contributing to peroxisomal β-oxidation was evaluated on BV-2 cells by flow cytometry and complementary methods (fluorescence microscopy, and RT-qPCR). By flow cytometry a strong expression of peroxisomal proteins (Abcd1, Abcd2, Abcd3) was observed. These data were in agreement with tho…

research product

Effect of dietary polyunsaturated fatty acids on the expression of peroxisomal ABC transporters

Abstract Peroxisomal ABC transporters encoded by the ABCD genes are thought to participate in the import of specific fatty acids in the peroxisomal matrix. ABCD1 deficiency is associated with X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder which is characterized by the accumulation of saturated very-long-chain fatty acids (VLCFA). ABCD2 (the closest homolog of ABCD1) and ABCD3 have been shown to have partial functional redundancy with ABCD1; only when overexpressed, they can compensate for VLCFA accumulation. Other lipids, for instance polyunsaturated fatty acids (PUFA), should be possible candidate substrates for the ABCD2 and ABCD3 gene products, ALDRP and PM…

research product

Peroxisomal and mitochondrial status of two murine oligodendrocytic cell lines (158N, 158JP): potential models for the study of peroxisomal disorders associated with dysmyelination processes.

International audience; In some neurodegenerative disorders (leukodystrophies) characterized by myelin alterations, the defect of peroxisomal functions on myelin-producing cells (oligodendrocytes) are poorly understood. The development of in vitro models is fundamental to understanding the physiopathogenesis of these diseases. We characterized two immortalized murine oligodendrocyte cell lines: a normal (158N) and a jimpy (158JP) cell line mutated for the proteolipid protein PLP/DM20. Fluorescence microscopy, flow cytometry, and western blotting analysis allow to identify major myelin proteins (PLP colocalizing with mitochondria; myelin basic protein), oligodendrocyte (CNPase and myelin oli…

research product

Dehydroepiandrosterone up-regulates the Adrenoleukodystrophy-related gene (ABCD2) independently of PPAR alpha in rodents

International audience; X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease caused by mutations in the ABCD1 gene, which encodes a peroxisomal ABC transporter, ALDP, supposed to participate in the transport of very long chain fatty acids (VLCFA). The adrenoleukodystrophyrelated protein (ALDRP), which is encoded by the ABCD2 gene, is the closest homolog of ALDP and is considered as a potential therapeutic target since functional redundancy has been demonstrated between the two proteins. Pharmacological induction of Abcd2 by fibrates through the activation of PPARa has been demonstrated in rodent liver. DHEA, the most abundant steroid in human, is described as a PPARa activat…

research product

Structure-function analysis of peroxisomal ATP-binding cassette transporters using chimeric dimers

Background: Peroxisomal ABC transporters are predicted to function as homodimers in mammals. [br/] Results: ABCD1 interacts with ABCD2. Chimeric proteins mimicking full-length dimers represent novel tools for functional study. Artificial homodimers and heterodimers are functional. [br/] Conclusion: Interchangeability between ABCD1 and ABCD2 is confirmed, but PUFA transport depends on ABCD2. [br/] Significance: For the first time, heterodimers in mammals are proven to be functional.[br/] ABCD1 and ABCD2 are two closely related ATP-binding cassette half-transporters predicted to homodimerize and form peroxisomal importers for fatty acyl-CoAs. Available evidence has shown that ABCD1 and ABCD2 …

research product

LXR antagonists induce ABCD2 expression

X-linked adrenoleukodystrophy (X-ALD) is a rare neurodegenerative disorder characterized by the accumulation of very-long-chain fatty acids resulting from a beta-oxidation defect. Oxidative stress and inflammation are also key components of the pathogenesis. X-ALD is caused by mutations in the ABCDI gene, which encodes for a peroxisomal half ABC transporter predicted to participate in the entry of VLCFA-CoA into the peroxisome, the unique site of their beta-oxidation. Two homologous peroxisomal ABC transporters, ABCD2 and ABCD3 have been proven to compensate for ABCD1 deficiency when overexpressed. Pharmacological induction of these target genes could therefore represent an alternative ther…

research product

Transporteurs ABC peroxysomaux et adrénoleucodystrophie liée au chromosome X

X-linked adrenoleukodystrophy (X-ALD) is a complex neurodegenerative disease associated with mutations in the ABCD1 gene, which encodes for a peroxisomal ABC transporter. Thanks to the efforts of the ELA foundation and to the recent successes of gene therapy published in Science in 2009, X-ALD is better known but still remains poorly understood. The exact role of ABCD1 and its homologs, as well as the exact link between the biochemical and metabolic peroxisomal defects and the clinical symptoms of the disease remain to be elucidated. This review summarizes the knowledge concerning the subfamily D of the ABC transporter family and concerning X-ALD, the most frequent peroxisomal disorder.

research product

Substrate specificity overlap and interaction between Adrenoleukodystrophy protein (ALDP/ABCD1) and Adrenoleukodystrophy-related protein (ALDRP/ABCD2)

X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder caused by mutations in the ABCD1 gene, which encodes a peroxisomal member of the ATP-binding cassette (ABC) transporter subfamily D called ALDP. ALDP is supposed to function as a homodimer allowing the entry of CoA-esters of very-long chain fatty acids (VLCFA) into the peroxisome, the unique site of their β-oxidation. ALDP deficiency can be corrected by overexpression of ALDRP, its closest homolog. However, the exact nature of the substrates transported by ALDRP and its relationships with ALDP still remain unclear. To gain insight into the function of ALDRP, we used cell models allowing the induction in a dose-dependent m…

research product

Induction of the adrenoleukodystrophy-related gene (ABCD2) by thyromimetics.

X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 (ALD) gene. The ABCD2 gene, its closest homolog, has been shown to compensate for ABCD1 deficiency when overexpressed. We previously demonstrated that the ABCD2 promoter contains a functional thyroid hormone response element. Thyroid hormone (T3) through its receptor TRbeta can induce hepatic Abcd2 expression in rodents and transiently normalize the VLCFA level in fibroblasts of Abcd1 null mice. In a therapeutic perspective, the use of selective agonists of TRbeta should present the advantage to be devoid of side effects, at least concerning the cardiotoxicity associated to TRalpha activation. I…

research product

Rat adrenoleukodystrophy-related (ALDR) gene: full-length cDNA sequence and new insight in expression.

X-linked adrenoleukodystrophy (X-ALD) is an inherited demyelinating disorder due to mutations in the ALD gene, which encodes a peroxisomal ABC half-transporter (ALDP). It has been suggested that ALDP assembles with ALDRP (adrenoleukodystrophy-related protein), a close homologous half-transporter, to form a functional heterodimer. For the first time full-length ALDRP cDNA (5.5 kb) was cloned, and 5' and 3' RACE analysis revealed that alternative usage of polyadenylation sites generates the two transcripts of 3.0 and 5.5 kb observed in the rat in Northern blot analysis. Southern blotting and chromosomal mapping demonstrated one ALDR locus in the rat genome. Characterisation of the 3' flanking…

research product

Pharmacological Induction of Redundant Genes for a Therapy of X-ALD

X-linked adrenoleukodystrophy (X-ALD) is a recessive neurologic disease with an incidence among males of 1/17 000. Since the identification of the X-ALD gene (ABCD1) ten years ago (Mosser et al 1993), no satisfactory therapy has been available. A close homologue (ABCD2) was then cloned and presented as a putative modifier gene that could account for some of the extreme phenotypic variability of X-ALD (Lombard-Platet et al 1996). The inducibility of Abcd2 by the hypolipidemic drug fenofibrate in the liver of rodents (Albet et al 1997), correlated to a partial normalisation of the biochemical phenotype of X-ALD (Netik et al 1999), opened up the way of a pharmacological therapy of X-ALD. The b…

research product