0000000000133089

AUTHOR

Timo Hatanpää

0000-0003-3745-8296

Iridium metal and iridium oxide thin films grown by atomic layer deposition at low temperatures

Atomic layer deposition (ALD) of both iridium and iridium oxide films at low temperatures has been studied and the resulting films have been examined by XRD, FESEM, XRR, EDX, AFM, TOF-ERDA, and four point probe measurements. Iridium oxide films were successfully grown using (MeCp)Ir(CHD) and ozone between 100 and 180 °C, however, the density of the films substantially reduced at 120 °C and below. The density reduction was accompanied by a phase change from crystalline to amorphous IrO2. Metallic iridium films were deposited between 120 and 180 °C by adding a reductive hydrogen pulse after the oxidative ozone pulse. Comparison of these processes with the earlier process employing the same Ir…

research product

Alkylsilyl compounds as enablers of atomic layer deposition: analysis of (Et3Si)3As through the GaAs process

A new chemistry has been developed to deposit GaAs, the quintessential compound semiconductor. The ALD process is based on a dechlorosilylation reaction between GaCl3 and (Et3Si)3As. Characteristic ALD growth was demonstrated, indicating good applicability of the alkylsilyl arsenide precursor. ALD of GaAs produced uniform, amorphous and stoichiometric films with low impurity content. This was done with saturating growth rates and an easily controlled film thickness. Crystallization was achieved by annealing. Even though the growth rate strongly decreased with increasing deposition temperature, good quality film growth was demonstrated at 175 to 200 °C, indicating the presence of an ALD wind…

research product

Plasma-Enhanced Atomic Layer Deposition of Silver Thin Films

Thermal properties of various silver precursors known in the literature were evaluated in order to discover which precursor is the most suitable one for plasma-enhanced atomic layer deposition (PEALD) of silver thin films. Ag(fod)(PEt3) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) was found to be the best choice. Using Ag(fod)(PEt3) together with plasma-activated hydrogen, silver thin films were deposited at growth temperatures of 120–150 °C, and ALD-type saturative growth was achieved at 120–140 °C. At 120 °C, the growth rate was 0.03 nm per cycle. The plasma exposure time had also an effect on the growth rate: with shorter exposure times, the growth rate was lower over…

research product