0000000000133157

AUTHOR

Mordechai Choder

showing 6 related works from this author

Cytoplasmic 5′-3′ exonuclease Xrn1p is also a genome-wide transcription factor in yeast

2014

The 5′ to 3′ exoribonuclease Xrn1 is a large protein involved in cytoplasmatic mRNA degradation as a critical component of the major decaysome. Its deletion in the yeast Saccharomyces cerevisiae is not lethal, but it has multiple physiological effects. In a previous study, our group showed that deletion of all tested components of the yeast major decaysome, including XRN1, results in a decrease in the synthetic rate and an increase in half-life of most mRNAs in a compensatory manner. Furthermore, the same study showed that the all tested decaysome components are also nuclear proteins that bind to the 5′ region of a number of genes. In the present work, we show that disruption of Xrn1 activi…

lcsh:QH426-470nascent transcriptionSaccharomyces cerevisiaeRibosome biogenesisSaccharomyces cerevisiaetranscription rateSaccharomycesGenètica molecularSaccharomycesmRNA decayExoribonucleaseGeneticsOriginal Research ArticlemRNA stabilityNuclear proteinTranscription factorGeneGenetics (clinical)GeneticsbiologyTranslation (biology)biology.organism_classificationmRNA stability.Cell biologylcsh:GeneticsMolecular MedicinemRNA synthesis
researchProduct

RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and a novel mRNA decay pathway.

2021

AbstractmRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the 5’ to 3’ exonuclease Xrn1. Here we show that nucleocytoplasmic shuttling of several yeast mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1, location of one of which is conserved from yeast to human. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Preventing Xrn1 import, either by deleting KAP120 or mutating the two Xrn1 NLSs, compromises transcription and, unexpectedly, also cytoplas…

MultidisciplinaryTranscription GeneticRNA StabilityGeneral Physics and AstronomyHumansRNAGeneral ChemistrySaccharomyces cerevisiaeRNA MessengerGeneral Biochemistry Genetics and Molecular BiologyGenètica molecularNature communications
researchProduct

RNA-controlled nucleocytoplasmic shuttling of mRNA decay factors regulates mRNA synthesis and initiates a novel mRNA decay pathway

2021

AbstractmRNA level is controlled by factors that mediate both mRNA synthesis and decay, including the exonuclease Xrn1 - a major mRNA synthesis and decay factor. Here we show that nucleocytoplasmic shuttling of Xrn1 and of some of its associated mRNA decay factors plays a key role in determining both mRNA synthesis and decay. Shuttling is regulated by RNA-controlled binding of the karyopherin Kap120 to two nuclear localization sequences (NLSs) in Xrn1. The decaying RNA binds and masks NLS1, establishing a link between mRNA decay and Xrn1 shuttling. Mutations in the two NLSs, which prevent Xrn1 import, compromise transcription and, unexpectedly, also the cytoplasmic decay of ∼50% of the cell…

chemistry.chemical_classificationExonuclease0303 health sciencesbiology030302 biochemistry & molecular biologyMRNA DecayRNACell biology03 medical and health sciencesmedicine.anatomical_structurechemistryCytoplasmTranscription (biology)medicinebiology.proteinNucleusNuclear localization sequence030304 developmental biologyKaryopherin
researchProduct

Gene expression is circular: factors for mRNA degradation also foster mRNA synthesis.

2013

SummaryMaintaining proper mRNA levels is a key aspect in the regulation of gene expression. The balance between mRNA synthesis and decay determines these levels. We demonstrate that most yeast mRNAs are degraded by the cytoplasmic 5′-to-3′ pathway (the “decaysome”), as proposed previously. Unexpectedly, the level of these mRNAs is highly robust to perturbations in this major pathway because defects in various decaysome components lead to transcription downregulation. Moreover, these components shuttle between the cytoplasm and the nucleus, in a manner dependent on proper mRNA degradation. In the nucleus, they associate with chromatin—preferentially ∼30 bp upstream of transcription start-sit…

CytoplasmSaccharomyces cerevisiae ProteinsTranscription GeneticRNA StabilityGenes FungalRNA polymerase IIRNA-binding proteinSaccharomyces cerevisiaeGenètica molecularGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesGene Expression ProcessTranscription (biology)Gene Expression Regulation FungalGene expressionP-bodiesmedicineRNA Messenger030304 developmental biologyRegulation of gene expressionCell Nucleus0303 health sciencesbiologyBiochemistry Genetics and Molecular Biology(all)030302 biochemistry & molecular biologyRNA-Binding ProteinsRNA FungalMolecular biologyCell biologyCell nucleusmedicine.anatomical_structureExoribonucleasesbiology.proteinRNARNA Polymerase IICell
researchProduct

Eukaryotic mRNA decay: methodologies, pathways, and links to other stages of gene expression.

2012

mRNA concentration depends on the balance between transcription and degradation rates. On both sides of the equilibrium, synthesis and degradation show, however, interesting differences that have conditioned the evolution of gene regulatory mechanisms. Here, we discuss recent genome-wide methods for determining mRNA half-lives in eukaryotes. We also review pre- and posttranscriptional regulons that coordinate the fate of functionally related mRNAs by using protein- or RNA-based trans factors. Some of these factors can regulate both transcription and decay rates, thereby maintaining proper mRNA homeostasis during eukaryotic cell life.

GeneticsUntranslated regionMessenger RNARNA StabilityEukaryotic transcriptionRNA-binding proteinRNA polymerase IIGenomicsBiologyCell biologyGene Expression RegulationStructural BiologyProtein BiosynthesisGene expressionP-bodiesbiology.proteinAnimalsHumansMolecular BiologyTranscription factorSignal TransductionJournal of molecular biology
researchProduct

The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins

2019

The highly conserved 5’–3’ exonuclease Xrn1 regulates gene expression in eukaryotes by coupling nuclear DNA transcription to cytosolic mRNA decay. By integrating transcriptome-wide analyses of translation with biochemical and functional studies, we demonstrate an unanticipated regulatory role of Xrn1 in protein synthesis. Xrn1 promotes translation of a specific group of transcripts encoding membrane proteins. Xrn1-dependence for translation is linked to poor structural RNA contexts for translation initiation, is mediated by interactions with components of the translation initiation machinery and correlates with an Xrn1-dependence for mRNA localization at the endoplasmic reticulum, the trans…

0301 basic medicineExonucleaseCell biologySaccharomyces cerevisiae ProteinsTranscription GeneticMolecular biologyScienceRNA StabilityGenetic VectorsGeneral Physics and AstronomyGene Expression02 engineering and technologySaccharomyces cerevisiaeEndoplasmic ReticulumGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesEukaryotic translationTranscription (biology)Gene Expression Regulation FungalGene expression540 ChemistryProtein biosynthesisRNA MessengerCloning Molecularlcsh:ScienceRegulation of gene expressionMultidisciplinarybiologyChemistryGene Expression ProfilingQMembrane ProteinsTranslation (biology)General Chemistry021001 nanoscience & nanotechnologyRibosomeRecombinant Proteins3. Good healthCell biology030104 developmental biologyMembrane proteinProtein BiosynthesisExoribonucleasesbiology.protein570 Life sciences; biologylcsh:Q0210 nano-technologySignal Transduction
researchProduct