0000000000133298
AUTHOR
Subodh Mhaisalkar
Self-assembled hierarchical nanostructured perovskites enable highly efficient LEDs via an energy cascade
Metal halide perovskites have established themselves as extraordinary optoelectronic materials, exhibiting promise for applications in large area illumination and displays. However, low luminescence, low efficiencies of the light-emitting diodes (LEDs), and complex preparation methods currently limit further progress towards applications. Here, we report on a new and unique mesoscopic film architecture featuring the self-assembly of 3D formamidinium lead bromide (FAPbBr3) nanocrystals of graded size, coupled with microplatelets of octylammonium lead bromide perovskites that enables an energy cascade, yielding very high-performance light-emitting diodes with emission in the green spectral re…
Advances in Perovskite Optoelectronics: Bridging the Gap Between Laboratory and Fabrication
In 2019, hybrid halide perovskites celebrated their 10th anniversary as a "wonder material" for optoelectronic applications. Although the parent perovskite structures were elucidated in the late 19th century, the seminal work by Miyasaka et al. exploiting organic‐inorganic hybrid halide perovskites sensitizers for visible‐light conversion in solar cells marked the revisit of these materials and has proven to be a game‐changer in this field. Extensive investigations were undertaken to develop new materials (all inorganic and organic‐inorganic hybrids, in the form of films or alternate morphologies) and deposition techniques, explore interfaces and in‐depth characterization, while engineering…
Preface to Special Issue of ChemSusChem on Perovskite Optoelectronics
This Editorial introduces one of two companion Special Issues on "Halide Perovskites for Optoelectronics Applications" in ChemSusChem and Energy Technology following the ICMAT 2017 Conference in Singapore. More information on the other Special Issue can be found in the Editorial published in Energy Technology.
Preface to Special Issue of Energy Technology on Perovskite Optoelectronics
This Editorial introduces one of two companion Special Issues on “Halide Perovskites for Optoelectronics Applications” in Energy Technology and ChemSusChem following the ICMAT 2017 Conference in Singapore. More information on the other Special Issue can be found in the Editorial published in ChemSusChem.
Perovskite nanoparticles : synthesis, properties, and novel applications in photovoltaics and LEDs
Solar cells and light-emitting diodes (LEDs) based on metal-halide perovskites are transitioning from promising performers to direct competitors to well-established technologies, with cost-effectiveness as a strong advantage. Nanostructured perovskites have yielded record LEDs due to their higher versatility in the local management of charge carriers, which has enabled photoluminescence quantum yields (PLQYs) close to 100%. However, these perovskite nanostructures are yet to be fully exploited in other applications such as photovoltaics, where they can also present competitive advantages as they enable feasible routes to surpass the Shockley–Queisser limit by means of multiexciton generatio…
Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules
The rapid improvement in the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has prompted interest in bringing the technology toward commercialization. Capitalizing on existing industrial processes facilitates the transition from laboratory to production lines. In this work, we prove the scalability of thermally co-evaporated MAPbI3 layers in PSCs and mini-modules. With a combined strategy of active layer engineering, interfacial optimization, surface treatments, and light management, we demonstrate PSCs (0.16 cm2 active area) and mini-modules (21 cm2 active area) achieving record PCEs of 20.28% and 18.13%, respectively. Un-encapsulated PSCs retained ∼90% of their initial…
Efficient photoluminescent thin films consisting of anchored hybrid perovskite nanoparticles
Methylammonium lead bromide nanoparticles are synthetized with a new ligand (11-aminoundecanoic acid hydrobromide) by a non-template method. Upon dispersion in toluene they show a remarkable photoluminescence quantum yield of 80%. In addition, the bifunctional ligand allows anchoring of the nanoparticles on a variety of conducting and semiconducting surfaces, showing bright photoluminescence with a quantum yield exceeding 50%. This opens a path for the simple and inexpensive preparation of multilayer light-emitting devices. NRF (Natl Research Foundation, S’pore) ASTAR (Agency for Sci., Tech. and Research, S’pore) Accepted version