0000000000134917

AUTHOR

Matthias Hanauer

Pilot applications of internally contracted multireference coupled cluster theory, and how to choose the cluster operator properly.

The internally contracted multireference coupled cluster (icMRCC) method allows a highly accurate description of both static and dynamic correlation with a computational scaling similar to single reference coupled cluster theory. The authors show that the method can lose its orbital invariance and size consistency when no special care is taken in the elimination of redundant excitations. Using the BeH(2) model system, four schemes are compared which differ in their treatment of linear dependencies between excitations of different rank (such as between singles and doubles). While the energy curves agree within tens of μE(h) when truncating the cluster operator at double excitations (icMRCCSD…

research product

Excited states with internally contracted multireference coupled-cluster linear response theory.

In this paper, the linear response (LR) theory for the variant of internally contracted multireference coupled cluster (ic-MRCC) theory described by Hanauer and Kohn [J. Chem. Phys. 134, 204211 (2011)] has been formulated and implemented for the computation of the excitation energies relative to a ground state of pronounced multireference character. We find that straightforward application of the linear-response formalism to the time-averaged ic-MRCC Lagrangian leads to unphysical second-order poles. However, the coupling matrix elements that cause this behavior are shown to be negligible whenever the internally contracted approximation as such is justified. Hence, for the numerical impleme…

research product

Meaning and magnitude of the reduced density matrix cumulants

Abstract Within the framework of a generalized normal ordering (GNO), invented by Mukherjee [1] , the reduced density matrix cumulants of the (multiconfigurational) reference wave function play a central role, as they arise directly from the contraction rules. The extended Wick theorem allows contractions of an arbitrary number of active annihilators and creators through a cumulant of corresponding rank. Because the cumulant rank truncates naturally only at the number of active spin orbitals, practical applications of the GNO concept seem to rely on a fast convergence of the cumulant series, allowing one to neglect cumulants with high rank. By computing cumulant norms for selected systems (…

research product

Explicitly correlated internally contracted multireference coupled-cluster singles and doubles theory: ic-MRCCSD(F12∗)

Abstract An explicitly correlated ansatz employing Slater-type geminals and cusp conditions is developed for the internally contracted multireference coupled-cluster singles and doubles method. Only the most important geminal terms are retained in the spirit of earlier work for single-reference theory. Throughout all our test calculations, the new ic-MRCCSD(F12∗) method improves the basis set convergence of many properties, e.g., spectroscopic constants or singlet–triplet splittings, with only little extra computational cost. If a perturbative correction for connected triples is included (the ic-MRCCSD(F12∗)+(T) method), very accurate results can be obtained even with minimal active spaces.

research product

Perturbative treatment of triple excitations in internally contracted multireference coupled cluster theory.

Internally contracted multireference coupled cluster (ic-MRCC) methods with perturbative treatment of triple excitations are formulated based on Dyall's definition of a zeroth-order Hamiltonian. The iterative models ic-MRCCSDT-1, ic-MRCC3, and their variants ic-MRCCSD(T), ic-MRCC(3) which determine the energy correction from triples by a non-iterative step are consistent in the single-reference limit with CCSDT-1a, CC3, CCSD(T), and CC(3), respectively. Numerical tests on the potential energy surfaces of BeH(2), H(2)O, and N(2) as well as on the structure and harmonic vibrational frequencies of the ozone molecule show that these methods account very well for higher order correlation effects…

research product

Response properties with explicitly correlated coupled-cluster methods using a Slater-type correlation factor and cusp conditions

The recently proposed extension of the explicitly correlated coupled-cluster ansatz using cusp conditions [A. Kohn, J. Chem. Phys. 130, 104104 (2009)] is tested for suitability in the calculation of response properties. For this purpose, static and dynamic electrical properties up to ESHG hyperpolarizabilities as well as optical rotations have been computed within the CCSD(F12) model. It is shown that effectively converged correlation contributions can reliably be obtained using augmented quadruple zeta basis sets already. The ansatz is optionally equipped with an extension capable of reducing the one-electron basis set error. A further simplification of the method specific Lagrangian aimed…

research product

State-specific multireference coupled-cluster theory

The multireference problem is considered one of the great challenges in coupled-cluster (CC) theory. Most recent developments are based on state-specific approaches, which focus on a single state and avoid some of the numerical problems of more general approaches. We review various state-of-the-art methods, including Mukherjee's state-specific multireference coupled-cluster (Mk-MRCC) theory, multireference Brillouin–Wigner coupled-cluster (MR-BWCC) theory, the MRexpT method, and internally contracted multireference coupled-cluster (ic-MRCC) theory. Related methods such as extended single-reference schemes [e.g., the complete active space coupled-cluster (CASCC) theory] and canonical transfo…

research product

Communication: Restoring full size extensivity in internally contracted multireference coupled cluster theory.

The reason for the lack of size extensivity in the valence space in current implementations of internally contracted multireference coupled cluster theories is the procedure used to eliminate redundant components from the cluster operator. We present a simple way to restore full size extensivity by performing this critical step in a basis of excitation operators that are normal ordered with respect to the multiconfigurational reference function.

research product

Separation of Nanoparticles by Gel Electrophoresis According to Size and Shape

We demonstrate the separation of gold and silver nanoparticles according to their size and shape by agarose gel electrophoresis after coating them with a charged polymer layer. The separation is monitored optically using the size- and shape-dependent plasmon resonance of noble metal particles and confirmed by transmission electron microscopy (TEM). Electrophoretic mobilities are quantitatively explained by a model based on the Henry formula, providing a theoretical framework for predicting gel mobilities of polymer coated nanoparticles.

research product