0000000000135362

AUTHOR

Stephanie L. Yardley

showing 4 related works from this author

Understanding the Origins of Problem Geomagnetic Storms Associated with "Stealth" Coronal Mass Ejections.

2021

Geomagnetic storms are an important aspect of space weather and can result in significant impacts on space- and ground-based assets. The majority of strong storms are associated with the passage of interplanetary coronal mass ejections (ICMEs) in the near-Earth environment. In many cases, these ICMEs can be traced back unambiguously to a specific coronal mass ejection (CME) and solar activity on the frontside of the Sun. Hence, predicting the arrival of ICMEs at Earth from routine observations of CMEs and solar activity currently makes a major contribution to the forecasting of geomagnetic storms. However, it is clear that some ICMEs, which may also cause enhanced geomagnetic activity, cann…

010504 meteorology & atmospheric sciencesSpace weather01 natural scienceslaw.inventionDIMMINGSPhysics - Space PhysicslawRECONNECTIONCoronal mass ejectionQB Astronomy010303 astronomy & astrophysicsCoronagraphQCMISSIONQBSTREAMERSUN3rd-DASLow-coronal signaturesMagnetic StormsAstrophysics - Solar and Stellar AstrophysicsMagnetic stormsPhysical SciencesCURRENT SHEETSpace WeatherGeologyCoronal Mass EjectionsSettore FIS/06 - Fisica Per Il Sistema Terra E Il Mezzo CircumterrestreSpace weatherSOLAR-WIND HELIUMMAGNETIC CLOUDSFOS: Physical sciencesSolar cycle 24Astronomy & AstrophysicsArticleCurrent sheet0103 physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesGeomagnetic stormScience & TechnologyAstronomyAstronomy and AstrophysicsSpace Physics (physics.space-ph)EVOLUTIONEarth's magnetic fieldQC Physics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Low-Coronal SignaturesCoronal mass ejectionsMAGNETOHYDRODYNAMIC MODELSInterplanetary spaceflightSpace science reviews
researchProduct

A prospective new diagnostic technique for distinguishing eruptive and noneruptive active regions

2019

This research has received funding from the Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214). This work used the DiRAC@Durham facility managed by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). The equipment was funded by BEIS capital funding via STFC capital grants ST/P002293/1, ST/R002371/1, and ST/S002502/1, Durham University and STFC operations grant ST/R000832/1. DiRAC is part of the National e-Infrastructure. S.L.Y. would like to acknowledge STFC for sup…

Solar coronal mass ejections (310)010504 meteorology & atmospheric sciencesSpace weatherSolar magnetic fieldsSolar activityT-NDASLibrary scienceFOS: Physical sciencesSpace weather (2037)Solar coronaSolar activity (1475)Solar flares (1496)01 natural sciencesSolar coronal mass ejectionsSolar corona (1483)0103 physical sciencesmedia_common.cataloged_instanceAstrophysics::Solar and Stellar AstrophysicsQB AstronomyEuropean union010303 astronomy & astrophysicsQCSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesmedia_commonQBPhysicsEuropean researchSolar active region magnetic fieldsAstronomy and AstrophysicsSolar active region magnetic fields (1975)Solar magnetic fields (1503)Solar active regionsSolar active regions (1974)QC PhysicsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSolar flaresSpace and Planetary SciencePhysics::Space Physics
researchProduct

A space weather tool for identifying eruptive active regions

2019

Funding: UK Science and Technology Facilities Council (UK) through the consolidated grant ST/N000609/1 and the European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 647214); UK STFC via the Consolidated Grant SMC1/YST025 and SMC1/YST037 (S.L.Y.); UK STFC and the ERC (SynergyGrant: WHOLE SUN, Grant Agreement No. 810218) for financial support (DHM). One of the main goals of solar physics is the timely identification of eruptive active regions. Space missions such as Solar Orbiter or future Space Weather forecasting missions would largely benefit from this achievement.Our aim is to produce a relatively simple technique that c…

010504 meteorology & atmospheric sciencesSpace weatherSolar magnetic fieldsFOS: Physical sciencesSpace weather01 natural sciences3rd-NDASSolar coronal mass ejections0103 physical sciencesRegional sciencemedia_common.cataloged_instanceQB AstronomyEuropean union010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QC0105 earth and related environmental sciencesmedia_commonQBPhysicsHorizon (archaeology)European researchAstronomy and AstrophysicsSolar active region magnetic fieldsSolar active regionsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science
researchProduct

Determining the source and eruption dynamics of a stealth CME using NLFFF modelling and MHD simulations

2021

Coronal mass ejections (CMEs) that exhibit weak or no eruption signatures in the low corona, known as stealth CMEs, are problematic as upon arrival at Earth they can lead to geomagnetic disturbances that were not predicted by space weather forecasters. We investigate the origin and eruption of a stealth event that occurred on 2015 January 3 that was responsible for a strong geomagnetic storm upon its arrival at Earth. To simulate the coronal magnetic field and plasma parameters of the eruption we use a coupled approach. This approach combines an evolutionary nonlinear force-free field model of the global corona with a MHD simulation. The combined simulation approach accurately reproduces th…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesSun: coronal mass ejections (CMEs)FOS: Physical sciencesAstrophysics01 natural sciencesPhysics::GeophysicsAeronauticsMethods: data analysis0103 physical sciencesQB AstronomyAstrophysics::Solar and Stellar Astrophysicsdata analysis [Methods]Sun: magnetic fields010303 astronomy & astrophysicsQCSolar and Stellar Astrophysics (astro-ph.SR)QB0105 earth and related environmental sciencesPhysicsAstronomy and Astrophysics3rd-DAScoronal mass ejections (CMEs) [Sun]QC PhysicsAstrophysics - Solar and Stellar Astrophysicsmagnetic fields [Sun]13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsAstronomy & Astrophysics
researchProduct