0000000000135841
AUTHOR
Anne Deininger
Influence of Riverine Input on Norwegian Coastal Systems
Coastal ecosystems are of high ecological and socioeconomic importance and are strongly influenced by processes from land, sea, and human activities. In this study, we present physical, chemical, and biological observations over two consecutive years from three study regions along the Norwegian coast that represent a broad latitudinal gradient in catchment and oceanographic conditions (∼59–69°N): outer Oslofjord/southern Norway, Runde/western Norway, and Malangen/northern Norway. The observations included river monitoring, coastal monitoring, and sensor-equipped ships of opportunity (“FerryBox”). The riverine discharge and transports were an order of magnitude higher, and the spatiotemporal…
Organic nitrogen steadily increasing in Norwegian rivers draining to the Skagerrak coast
AbstractDeclining atmospheric nitrogen (N) deposition, through reduction in the direct input of inorganic N, may result in less inorganic N being leached from soils to freshwaters (dissolved inorganic N = DIN). Declining sulphur deposition, through reducing the ionic strength in soil water, increases the solubility and mobility of organic soil compounds and may result in increased leaching of organically bound N to freshwaters (total organic N = TON). It is unknown to which extent these two independents and opposing trends, i.e. DIN decline versus TON increase, may affect the nutrient balance (load, stoichiometry) of river water draining into coastal zones. By combining long-term atmospheri…
Terrestrial Inputs Drive Seasonality in Organic Matter and Nutrient Biogeochemistry in a High Arctic Fjord System (Isfjorden, Svalbard)
Climate-change driven increases in temperature and precipitation are leading to increased discharge of freshwater and terrestrial material to Arctic coastal ecosystems. These inputs bring sediments, nutrients and organic matter (OM) across the land-ocean interface with a range of implications for coastal ecosystems and biogeochemical cycling. To investigate responses to terrestrial inputs, physicochemical conditions were characterized in a river- and glacier-influenced Arctic fjord system (Isfjorden, Svalbard) from May to August in 2018 and 2019. Our observations revealed a pervasive freshwater footprint in the inner fjord arms, the geochemical properties of which varied spatially and seaso…
Coastal Research Seen Through an Early Career Lens—A Perspective on Barriers to Interdisciplinarity in Norway
The value of interdisciplinarity for solving complex coastal problems is widely recognized. Many early career researchers (ECRs) therefore actively seek this type of collaboration through choice or necessity, for professional development or project funding. However, establishing and conducting interdisciplinary research collaborations as an ECR has many challenges. Here, we identify these challenges through the lens of ECRs working in different disciplines on a common ecosystem, the Norwegian Skagerrak coast. The most densely populated coastline in Norway, the Skagerrak coast, is experiencing a multitude of anthropogenic stressors including fishing, aquaculture, eutrophication, climate chan…
Effects of nitrogen enrichment on zooplankton biomass and N:P recycling ratios across a DOC gradient in northern-latitude lakes
AbstractWe used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer effi…
Unified understanding of intrinsic and extrinsic controls of dissolved organic carbon reactivity in aquatic ecosystems
Despite our growing understanding of the global carbon cycle, scientific consensus on the drivers and mechanisms that control dissolved organic carbon (DOC) turnover in aquatic systems is lacking, hampered by the mismatch between research that approaches DOC reactivity from either intrinsic (inherent chemical properties) or extrinsic (environmental context) perspectives. Here we propose a conceptual view of DOC reactivity in which the combination of intrinsic and extrinsic factors controls turnover rates and determines which reactions will occur. We review three major types of reactions (biological, photochemical, and flocculation) from an intrinsic chemical perspective and further define t…
Pelagic food webs of humic lakes show low short-term response to forest harvesting.
Forest harvest in the boreal zone can increase the input of terrestrial materials such as dissolved organic carbon (DOC) and nitrate (NO3) into nearby aquatic ecosystems,with potential effects on phytoplankton growth through enhanced nutrient (i.e., positive) or reduced light availability (i.e., negative), which may affect ecosystem productivity and consumer resource use. Here, we conducted forest clear-cutting experiments in the catchments of four small, humic, and nitrogen-limited unproductive boreal lakes (two controls and two clear-cut, 18% and 44% of area cut) with one reference and two impact years. Our aim was to assess the effects of forest clear-cutting on pelagic biomass productio…
Reevaluating the Role of Organic Matter Sources for Coastal Eutrophication, Oligotrophication, and Ecosystem Health
Organic matter (OM) in aquatic systems is either produced internally (autochthonous OM) or delivered from the terrestrial environment (ter-OM). For eutrophication (or the reverse – oligotrophication), the amount of autochthonous OM plays a key role for coastal ecosystem health. However, the influence of ter-OM on eutrophication or oligotrophication processes of coastal ecosystems is largely unclear. Therefore, ter-OM, or ter-OM proxies are currently not included in most policies or monitoring programs on eutrophication. Nevertheless, ter-OM is increasingly recognized as a strong driver of aquatic productivity: By influencing underwater light conditions and nutrient- and carbon availability,…