6533b7d3fe1ef96bd126012e
RESEARCH PRODUCT
Organic nitrogen steadily increasing in Norwegian rivers draining to the Skagerrak coast
ØYvind KasteØYvind KasteAnne DeiningerHelene FrigstadHelene FrigstadKari Austnessubject
0106 biological sciencesNutrient cycle010504 meteorology & atmospheric scienceslcsh:Medicinechemistry.chemical_element01 natural sciencesArticleEnvironmental impactNutrientElement cyclesLimnologyVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470EcosystemLeaching (agriculture)lcsh:Science0105 earth and related environmental sciencesMultidisciplinary010604 marine biology & hydrobiologyAquatic ecosystemSoil organic matterlcsh:RNitrogenMarine chemistrychemistryEnvironmental chemistryEnvironmental chemistrySoil waterEnvironmental sciencelcsh:QClimate-change impactsdescription
AbstractDeclining atmospheric nitrogen (N) deposition, through reduction in the direct input of inorganic N, may result in less inorganic N being leached from soils to freshwaters (dissolved inorganic N = DIN). Declining sulphur deposition, through reducing the ionic strength in soil water, increases the solubility and mobility of organic soil compounds and may result in increased leaching of organically bound N to freshwaters (total organic N = TON). It is unknown to which extent these two independents and opposing trends, i.e. DIN decline versus TON increase, may affect the nutrient balance (load, stoichiometry) of river water draining into coastal zones. By combining long-term atmospheric and riverine monitoring data of the five major Norwegian rivers draining to the Skagerrak coast, we show that over the past 27 years (1990–2017) river water nutrient composition, and specifically N stoichiometry has been steadily shifting from inorganic to organic fractions, with correlations to changes in human pressures (air pollution), but especially climate (precipitation, temperature, discharge). This shift in nutrient quality may have large consequences on the nutrient cycling in both freshwater and coastal ecosystems and illustrates the complex interactions of multiple stressors (here: N deposition, S deposition, and climate change) on aquatic ecosystems.
year | journal | country | edition | language |
---|---|---|---|---|
2020-01-01 |