0000000000135943

AUTHOR

X. Michaut

Collisional effects on spectral line shape from the Doppler to the collisional regime: A rigorous test of a unified model

International audience; The paper presents high resolution Raman investigations of the Q(1) line of H-2 in Ar mixture from low density (Doppler regime) to high density (collisional regime) analyzed with a unique line shape profile. Measurements are performed by stimulated Raman gain spectroscopy between 300 and 1000 K in a wide density range (from 0.2 to 11 amagat). All the observed spectral features are accurately described by a unified model recently proposed by two of the authors. This model accounts for a velocity-memory process, not restricted to the usual hard and soft limits. It also includes correlation between velocity- and phase-changing collisions. An exhaustive analysis of vario…

research product

H-2 vibrational spectral signatures in binary and ternary mixtures: theoretical model, simulation and application to CARS thermometry in high pressure flames

International audience; A summary of the main results obtained by the two groups in the field of H-2 vibrational spectral line signatures for various mixtures. in connection with CARS diagnostics of H-2-O-2 combustion systems, is presented. H-2-X Systems may have specific large inhomogeneous spectral features, due to the dependence of the line broadening and line shifting on the (H-2) radiator speed, particularly at high temperature. Thus, careful attention has to be paid to rigorously analyze such features, both from the experimental point of view (Dijon) and from the theoretical one (Besancon). Applications of the present results to high-pressure H-2/air flame thermometry are also briefly…

research product

Self-focusing in Terbium Gallium Garnet using Z-scan

International audience; When illuminated near its resonance with an Ar ion laser beam (lambda=488 nm), laser induced thermal self-focusing is observed in Terbium Gallium Garnet. The crystal exhibits a strong intensity dependent refractive index change Dn. The Z-scan technique is used to study the beam waist change due to Dn. The refractive index is found to be well described by a quadratic spatial distribution model. Both the sign and the distribution coefficient of Dn are determined.

research product

Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman nu(1) band

International audience; The shape of the nu(1) Raman Q branch of CH4 perturbed by Ar and He at room temperature has been studied. Stimulated Raman spectroscopy (SRS) experiments have been made in the 2915-2918 cm(-1) spectral region for total pressures from 0.4 to 70 atm and mixtures of approximate to 5% CH4 with He and Ar. Analysis of the spectra demonstrates that the shape of the Q branch is significantly influenced by line mixing and much narrower than what is predicted by the addition of individual line profiles. For the first time, a model is proposed for the calculation and analysis of the effects of collisions on the considered spectra. In this approach, the rotational part of the re…

research product

Optical diagnostic of temperature in rocket engines by coherent Raman techniques

Abstract This article reviews the study of Raman line shapes of molecular species involved in reactive media, such flames or engines, at high temperature and high pressure. This study is of interest from a fundamental as well as from a practical point of view with regards to the CARS temperature diagnostic of GH2–LOX combustion systems. We will particularly draw attention to recent investigations by means of Stimulated Raman Spectroscopy (SRS) in H2–H2O mixtures at temperature up to 1800 K. Whereas H2–X systems usually exhibit large inhomogeneous effects, due to the speed dependence of the collisional parameters, the absence of such apparent inhomogeneous signatures in the H2–H2O system all…

research product

FITTING LAW FOR THE DENSITY SHIFT OF Q(J) TRANSITIONS OF H2 IN H2–X (X: H2, He, N2) MIXTURES

Abstract A variety of fitting laws have been developed for the purpose of modelling broadening effects in collisional processes, but only a few have been proposed for modelling collision-induced lineshifts in molecules. We analysed accurate stimulated Raman data obtained in several H2–X mixtures (X: H2, He and N2). For the first time, we show that an empirical law provides a very good representation of collisional lineshift coefficients in the range 300–1200 K and for J quantum number up to 9.

research product

Collisional broadening and shifting parameters of the RamanQbranch ofH2perturbed byN2determined from speed-dependent line profiles at high temperatures

The broadening and shifting of the {ital Q} branch of H{sub 2} diluted in N{sub 2} are studied at temperatures between 300 and 1200 K. (i) In order to account for the observed anomalies (asymmetric profiles and nonlinearity of the linewidth versus perturber concentration), the results are interpreted using a speed-dependent model in its general form. This model introduces the speed dependence of the shift and the broadening. In contrast with the previous H{sub 2}{endash}rare-gas studies, the high-temperature measurements prove the necessity to include speed-dependent broadening that was ignored in the previous studies. (ii) Concomitantly, we report as well pure H{sub 2} results including Ra…

research product

An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques

International audience; The recently proposed spectral shear interferometry and the well-known z-scan techniques were employed for the determination of the nonlinear refractive index n2 of CS2, toluene and fused silica. The determined n2 values by both techniques were found to be in very good agreement. In addition, the role of the repetition rate of the laser is also investigated revealing its importance for the correct determination of both the size and the sign of the nonlinearity.

research product

Hydrogen CARS thermometry in H2-N2 mixtures at high pressure and medium temperatures: influence of linewidths models

International audience; In order to improve the accuracy of H2 CARS thermometry, H2 Q-branch CARS spectra have been recorded for various H2-N2 mixtures in a high-pressure cell at different pressures and temperatures (up to 40 bar and 875 K). Due to the low spectral resolution of broadband CARS experiments, the relevant spectral lineshape factor is the linewidth ratio G(Q(3))/G(Q(1)), since Q(1) and Q(3) are the most intense lines of the Q-branch spectrum in this temperature range. For the first time, the speed-inhomogeneous effects are accounted for in the simulation of the CARS profiles. The evaluated temperatures are in good agreement with reference values obtained by thermocouples. The s…

research product

Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman ν1 band

The shape of the ν1 Raman Q branch of CH4 perturbed by Ar and He at room temperature has been studied. Stimulated Raman spectroscopy (SRS) experiments have been made in the 2915–2918 cm−1 spectral region for total pressures from 0.4 to 70 atm and mixtures of ≈5% CH4 with He and Ar. Analysis of the spectra demonstrates that the shape of the Q branch is significantly influenced by line mixing and much narrower than what is predicted by the addition of individual line profiles. For the first time, a model is proposed for the calculation and analysis of the effects of collisions on the considered spectra. In this approach, the rotational part of the relaxation matrix is constructed, with no adj…

research product