0000000000136742
AUTHOR
Shawkat M. Aly
Reactivity of CuI and CuBr toward Et2S: a reinvestigation on the self-assembly of luminescent copper(I) coordination polymers.
CuI reacts with SEt(2) in hexane to afford the known strongly luminescent 1D coordination polymer [(Et(2)S)(3){Cu(4)(mu(3)-I)(4)}](n) (1). Its X-ray structure has been redetermined at 115, 235, and 275 K in order to address the behavior of the cluster-centered emission and is built upon Cu(4)(mu(3)-I)(4) cubane-like clusters as secondary building units (SBUs), which are interconnected via bridging SEt(2) ligands. However, we could not reproduce the preparation of a coordination polymer with composition [(Et(2)S)(3){Cu(4)(mu(3)-Br)(4)}](n) as reported in Inorg. Chem. 1975, 14, 1667. In contrast, the autoassembly reaction of SEt(2) with CuBr results in the formation of a novel 1D coordination…
Evidence for reverse pathways and equilibrium in singlet energy transfers between an artificial special pair and an antenna
A dyad, 1, built on an artificial special pair (bis(meso-nonyl)zinc(II)porphyrin), [Zn2], a spacer (biphenylene), a bridge (1,4-benzene), and an antenna (di-meso-(3,5-di(t-butyl)phenyl)porphyrin free base), FB, is prepared by Suzuki coupling and is analyzed by absorption and steady state, and time-resolved emission spectroscopy at 298 and 77 K. Using bases from the Förster theory, evidence for two pathways for S 1 energy transfer, FB* → [Zn2], and [Zn2]* → FB, along with their respective rates, k ET ( S 1)1 and k ET ( S 1)-1, are extracted from the comparison of the fluorescence decays monitored at the emission maximum. At 77 K, the unquenched (1.79 ([Zn2]) and 10.6 ns (FB)) and quenched c…
Rational synthetic design of well-defined Pt(bisethynyl)/Zn(porphyrin) oligomers for potential applications in photonics
Well-defined oligomers of 1, 2, 3 and 4 units built upon the very soluble bis-1,15-(1,4-ethynylbenzene)-3,7,13,17-tetramethyl-2,8,12,18-tetrakis(n-hexyl) zinc(II) porphyrin ligand and the trans-bis(tri-n-butylphosphine)platinum(II) linker, with acetylene or trimethylsilane as end groups, has been prepared in the presence of a dichloromethane/diethylamine mixture (1 : 1 v/v) and CuX (X = Cl, I) at room temperature, analogue to a Sonogashira coupling. The new monodisperse organometallic oligomers were characterized by 1H, 31P NMR, UV-visible spectroscopies and MALDI-TOF mass spectrometry. The methyl groups placed at the 3,7,13,17-positions induces the locking of the C6H4 fragment in a perpend…
Random Structural Modification of a Low-Band-Gap BODIPY-Based Polymer
International audience; A BODIPY thiophene polymer modified by extending conjugation of the BODIPY chromophore is reported. This modification induces tunability of energy levels and therefore absorption wavelengths in order to target lower energies.
Effect of t-BuS vs. n-BuS on the topology, Cu⋯Cu distances and luminescence properties of 2D Cu4I4/RS(CH2)4SR metal–organic frameworks
CuI reacts with RS(CH2)4SR (R = n-Bu (L1); t-Bu (L2)) to afford the 2D coordination polymers [Cu4I4{μ-RS(CH2)4SR}2]n (R = n-Bu (1); t-Bu (2)). Their grid networks exhibit nodal Cu4(μ3-I)4 clusters interconnected by dithioethers with mean Cu⋯Cu distances of 2.7265(10) and 2.911(2) A for 1 and 2, respectively. This difference translates in a blue shift of the solid state emission bands and a decrease in emission lifetimes when trading R = n-Bu to the bulky t-Bu.
Copper(I) Halides (X = Br, I) Coordinated to Bis(arylthio)methane Ligands: Aryl Substitution and Halide Effects on the Dimensionality, Cluster Size and Luminescence Properties of the Coordination Polymers
Bis(phenylthio)methane (L1) reacts with CuI to yield the 1D-coordination polymer [{Cu4(μ3-I)4}(μ-L1)2]n (1) bearing cubane Cu4I4 clusters as connecting nodes. The crystal structures at 115, 155, 195, and 235 K provided evidence for a phase transition changing from the monoclinic space group C2/c to P21/c. The self-assembly process of CuI with bis(p-tolylthio)methane (L2), bis(4-methoxyphenylthio)methane (L3), and bis(4-bromo-phenylthio)methane (L4) affords the 1D-coordination polymers [{Cu4(μ3-I)4}(μ-Lx)2]n (x = 2, 3, or 4). Compounds 2 and 4 are isostructural with C2/c low temperature polymorph of 1, whereas the inversion centers and 2-fold axes are lost in 3 (space group Cc). The use of b…
Design and photophysical properties of zinc(II) porphyrin-containing dendrons linked to a central artificial special pair.
The click chemistry synthesis and photophysical properties, notably photo-induced energy and electron transfers between the central core and the peripheral chromophores of a series of artificial special pair-dendron systems (dendron = G1, G2, G3; Gx = zinc(II) tetra-meso-arylporphyrin-containing polyimides) built upon a central core of dimethylxanthenebis(metal(II) porphyrin) (metal = zinc, copper), are reported. The dendrons act as singlet and triplet energy acceptors or donors, depending on the dendrimeric systems. The presence of the paramagnetic d(9) copper(II) in the dendrimers promotes singlet-triplet energy transfer from the zinc(II) tetra-meso-arylporphyrin to the bis(copper(II) por…
Dendron to central core S1-S1 and S2-S(n) (n1) energy transfers in artificial special pairs containing dendrimers with limited numbers of conformations.
Two dendrimers consisting of a cofacial free-base bisporphyrin held by a biphenylene spacer and function- alized with 4-benzeneoxomethane (5-(4-benzene)tri-10,15,20-(4-n-octyl- benzene)zinc(II)porphyrin) using either five or six of the six available meso-positions, have been synthesized and characterized as models for the an- tenna effect in Photosystems I and II. The presence of the short linkers, -CH2O-, and long C8H17 soluble side chains substantially reduces the number of conformers (foldamers) compared with classic dendrimers built with longer flexible chains. This simpli- fication assists in their spectroscopic and photophysical analysis, notably with respect to fluorescence resonance…
Energy transfers in monomers, dimers, and trimers of zinc(II) and palladium(II) porphyrins bridged by rigid Pt-containing conjugated organometallic spacers
A series of linear monomers (spacer-M(P)), dimers (M(P)-spacer-M'(P)), and trimers (M(P)-spacer-M'(P)-spacer-M(P)) of spacer/metalloporphyrin systems (M' = Zn, M = Zn, Pd, P = porphyrin, and spacer = trans-C(6)H(4)C[triple bond]CPtL(2)C[triple bond]CC(6)H(4)- (L = PEt(3))) including mixed metalloporphyrin compounds, were synthesized and characterized. The S(1) and T(1) energy transfers Pd(P)*--Zn(P) occur with rates of approximately 2 x 10(9) s(-1), S(1), and 0.15 x 10(3) (slow component) and 4.3 x 10(3) s(-1) (fast component), T(1). On the basis of a literature comparison with a related dyad, the Pt atom in the conjugated chain slows down the transfers. The excitation in the absorption ban…
Design of Triads for Probing the Direct Through Space Energy Transfers in Closely Spaced Assemblies
Using a selective stepwise Suzuki cross-coupling reaction, two trimers built on three different chromophores were prepared. These trimers exhibit a D(^)A1-A2 structure where the donor D (octa-β-alkyl zinc(II)porphyrin either as diethylhexamethyl, 10a, or tetraethyltetramethyl, 10b, derivatives) through space transfers the S1 energy to two different acceptors, di(4-ethylbenzene) zinc(II)porphyrin (A1; acceptor 1) placed cofacial with D, and the corresponding free base (A2; acceptor 2), which is meso-meso-linked with A1. This structure design allows for the possibility of comparing two series of assemblies, 9a,b (D(^)A1) with 10a,b (D(^)Â1-A2), for the evaluation of the S1 energy transfer for…
Acceleration of the through space S1 energy transfer rates in cofacial bisporphyrin bio-inspired models by virtue of substituents effect on the Förster J integral and its implication in the antenna effect in the photosystems
The singlet k(ET) for cofacial β-octaalkylporphyrin/bis(meso-aryl)porphyrin dyads increases linearly with the gap between the donor-acceptor 0-0 fluorescence peaks at 77 K.
Is the special pair structure a good strategy for the kinetics during the last step of the energy transfer with the nearest antenna? A chemical model approach.
A cofacial bis(Mg(II)porphyrin)-C(6)H(4)-free base ([Mg(2)]-bridge-FB) dyad shows S(1) energy transfer in both directions and much slower rates than similar monoporphyrin systems are observed.
CCDC 974338: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974340: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974327: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974334: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974333: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974326: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974341: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974324: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974325: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974328: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974336: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974335: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974337: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974329: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974339: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z