6533b7d4fe1ef96bd1261ce4

RESEARCH PRODUCT

Evidence for reverse pathways and equilibrium in singlet energy transfers between an artificial special pair and an antenna

Shawkat M. AlyShawkat M. AlyAdam LangloisRoger GuilardPierre D. HarveyPierre D. HarveyJean-michel Camus

subject

chemistry.chemical_compoundChemistryFree baseGeneral ChemistrySinglet stateEmission spectrumSteady state (chemistry)Atomic physicsBiphenyleneAbsorption (electromagnetic radiation)FluorescencePorphyrin

description

A dyad, 1, built on an artificial special pair (bis(meso-nonyl)zinc(II)porphyrin), [Zn2], a spacer (biphenylene), a bridge (1,4-benzene), and an antenna (di-meso-(3,5-di(t-butyl)phenyl)porphyrin free base), FB, is prepared by Suzuki coupling and is analyzed by absorption and steady state, and time-resolved emission spectroscopy at 298 and 77 K. Using bases from the Förster theory, evidence for two pathways for S 1 energy transfer, FB* → [Zn2], and [Zn2]* → FB, along with their respective rates, k ET ( S 1)1 and k ET ( S 1)-1, are extracted from the comparison of the fluorescence decays monitored at the emission maximum. At 77 K, the unquenched (1.79 ([Zn2]) and 10.6 ns (FB)) and quenched components (<100 ps; i.e. k ET ( S 1) > 10 (ns)-1), are observed, hence, demonstrating the bidirectional paths with no back energy transfer. A 298 K, only two components are detected (0.44 ([Zn2]) and 2.64 ns (FB)) and the resulting reduced τFs indicates back energy transfer, therefore cycling and equilibrium. Their global rates are 0.31 and 1.8 (ns)-1 for k ET ( S 1)1 and k ET ( S 1)-1 at 298 K. This large temperature dependence on k ET ( S 1) is fully consistent with the participation of thermal activation. Finally, DFT calculations (B3LYP) were used to illustrate a clear correlation between the relative k ET ( S 1) s and the amplitude of the MO couplings between the artificial special pair and the antenna.

https://doi.org/10.1142/s108842461350017x