0000000000135654
AUTHOR
Adam Langlois
The first example of cofacial bis(dipyrrins)
International audience; Two series of cofacial bis(dipyrrins) were prepared and their photophysical properties as well as their bimolecular fluorescence quenching with C-60 were investigated. DFT and TDDFT computations were also performed as a modeling tool to address the nature of the fluorescence state and the possible inter-chromophore interactions. Clearly, there is no evidence for such interactions and the bimolecular quenching of fluorescence, in comparison with mono-dipyrrins, indicates that C-60-bis(dipyrrin) contacts occur from the outside of the "mouth" of the cofacial structure.
Evidence for reverse pathways and equilibrium in singlet energy transfers between an artificial special pair and an antenna
A dyad, 1, built on an artificial special pair (bis(meso-nonyl)zinc(II)porphyrin), [Zn2], a spacer (biphenylene), a bridge (1,4-benzene), and an antenna (di-meso-(3,5-di(t-butyl)phenyl)porphyrin free base), FB, is prepared by Suzuki coupling and is analyzed by absorption and steady state, and time-resolved emission spectroscopy at 298 and 77 K. Using bases from the Förster theory, evidence for two pathways for S 1 energy transfer, FB* → [Zn2], and [Zn2]* → FB, along with their respective rates, k ET ( S 1)1 and k ET ( S 1)-1, are extracted from the comparison of the fluorescence decays monitored at the emission maximum. At 77 K, the unquenched (1.79 ([Zn2]) and 10.6 ns (FB)) and quenched c…
Decoupling the artificial special pair to slow down the rate of singlet energy transfer
Trimer 2, composed of a cofacial heterobismacrocycle, octamethyl-porphyrin zinc(II) and bisarylporphyrin zinc(II) held by an anthracenyl spacer, and a flanking acceptor, bisarylporphyrin free-base ( Ar = -3,5-(t Bu )2 C 6 H 3), has been studied by means of absorption spectroscopy, "steady state and time-resolved fluorescence" and fs transient absorption spectroscopy, and density functional theory (DFT) in order to assess the effect of decoupling the chromophores' low energy MOs on the rate of the singlet, S1, energy transfer, k ET , compared to a recently reported work on a heavily coupled trimeric system, Trimer 1, [biphenylenebis(n-nonyl)porphyrin zinc(II)]-bisarylporphyrin free-base ( A…
Modular P-Chirogenic Phosphine-Sulfide Ligands: Clear Evidence for Both Electronic Effect and P-Chirality Driving Enantioselectivity in Palladium-Catalyzed Allylations
Using the ephedrine methodology, modular stereoselective syntheses of a new class of P-chirogenic phosphines bearing a sulfur-chelating arm (P*,S-hybrid ligand) are described. A first series of syntheses based on a Fries-like rearrangement of P-chirogenic phosphinite-boranes, which are prepared from 2-bromobenzyl or 2-bromophenethyl alcohol and are mediated by metal–halide exchange, have been performed. This rearrangement affords phosphine-boranes stereospecifically with an o-hydroxyalkylphenyl substituent. The latter residue is subsequently converted into a sulfur-containing group. In a second series, the stereoselective syntheses were achieved according to a new strategy involving a react…
Cyclotriveratrylene-Containing Porphyrins
International audience; The C-3-symmetric cyclotriveratrylene (CTV) was covalently bonded via click chemistry to 1, 2, 3, and 6 zinc(II) porphyrin units to various host for C-60. The binding constants, Ka, were measured from the quenching of the porphyrin fluorescence by C-60. These constants vary between 400 and 4000 M-1 and are considered weak. Computer modeling demonstrated that the zinc(II) porphyrin units, [Zn], exhibit a strong tendency to occupy the CTV cavity, hence blocking the access for C-60 to land on this site. Instead, the pincer of the type [Zn]-[Zn] and in one case [Zn]-CTV, were found to be the most probable geometry to promote host-guest associations in these systems.
Very fast singlet and triplet energy transfers in a tri-chromophoric porphyrin dyad aided by the truxene platform
A trichromophoric dyad composed of an octa-β-alkyl-palladium(II)porphyrin (donor) and two tri-meso-aryl-zinc(II)porphyrins (acceptors) held by a truxene spacer exhibits very fast rates for triplet energy transfers at 77 (kET(T1) = 1.63 × 108 s-1) and 298 K (kET(T1) = 3.44 × 108 s-1), whereas the corresponding singlet energy transfer rates, kET(S1) = 3.9 × 1010 s-1 (77 K) and kET(S1) = 6.0 × 1010 s-1 (298 K), are also considered fast. The interpretation for these results is that the energy transfer processes proceed via a through bond Dexter mechanism (i.e. double electron exchange) supported by comparison with literature data and evidence for a moderate MO coupling between the donor and ac…
Excited State N−H Tautomer Selectivity in the Singlet Energy Transfer of a Zinc(II)-Porphyrin-Truxene-Corrole Assembly
International audience; An original corrole-containing polyad for S-1 energy transfer, in which one zinc(II)-porphyrin donor is linked to two free-base corrole acceptors by a truxene linker, is reported. This polyad exhibits a rapid zinc(II)-porphyrin*free-base corrole transfer (4.83x10(10)s(-1); 298K), even faster than the tautomerization in the excited state processes taking advantage of the good electronic communication provided by the truxene bridge. Importantly, the energy transfer process shows approximately 3-fold selectivity for one corrole N-H tautomer over the other even at low temperature (77K). This selectivity is due to the difference in the J-integral being effective in both t…
Is the special pair structure a good strategy for the kinetics during the last step of the energy transfer with the nearest antenna? A chemical model approach.
A cofacial bis(Mg(II)porphyrin)-C(6)H(4)-free base ([Mg(2)]-bridge-FB) dyad shows S(1) energy transfer in both directions and much slower rates than similar monoporphyrin systems are observed.
Antenna effects in truxene-bridged BODIPY triarylzinc(ii)porphyrin dyads: evidence for a dual Dexter–Förster mechanism
The antenna process from an energy donor (BODIPY; 4′,4′-difluoro-1′,3′,5′,7′-tetramethyl-4′-bora-3a′,4a′-diaza-s-indacene) in its singlet state to two acceptors (two zinc(II) 5,15-p-tolyl-10-phenylporphyrin) bridged by a central truxene residue (5′,5′′,10′,10′′,15′,15′′-hexabutyltruxene), 5, has been analysed by means of comparison of the energy transfer rates with those of a structurally similar β-substituted BODIPY-(zinc(II) 5,10,15-p-tolyl-porphyrin), 6, where no conjugation is present between the donor and the two acceptors using the Forster resonance energy transfer (FRET) approximation. It is estimated that the energy transfer in 5 operates mostly via a Dexter mechanism (>99%), and th…
Metal Dependence on the Bidirectionality and Reversibility of the Singlet Energy Transfer in Artificial Special Pair-Containing Dyads
International audience; The demetalation of a precursor dyad, 3, built upon a zinc(II)-containing artificial special pair and free-base antenna, leads to a new dyad, 4, for singlet energy transfer composed of cofacial free-base porphyrins (acceptor), [Fb](2) bridged by a 1,4-C6H4 group to a free-base antenna (donor), [Fb]. This dyad exhibits the general structure [M](2)-C6H4-[Fb], where [M](2) = [Fh](2), and completes a series reported earlier, where [M](2) = [Mg](2) (2) and [Zn](2) (3). The latter dyads exhibit a bidirectional energy-transfer process at 298 K for 2 and at 77 K for 3. Interestingly, a very scarce case of cycling process is observed for the zinc-containing dyad at 298 K. The…
Origin of the temperature dependence of the rate of singlet energy transfer in a three-component truxene-bridged dyads
We report a truxene-based dyad built upon one donor (tri-meso-phenylzinc(II)porphyrin) and two acceptors (octa-β-alkylporphyrin free base) in which the donor exhibits free rotation around a Ctruxene-Cmeso single bond at 298 K in fluid solution but not at 77 K in a glass matrix, whereas the acceptors have very limited motion as they are blocked by β-methyl groups. This case is interesting because all the structural and spectroscopic parameters affecting the rate for singlet energy transfer according to a Förster Resonance Energy Transfer are only weakly temperature dependent, leaving only the Dexter mechanism explaining the larger variation in rate of energy transfers with the temperature h…
Slow and Fast Singlet Energy Transfers in BODIPY-gallium(III)corrole Dyads Linked by Flexible Chains
Red (no styryl), green (monostyryl), and blue (distyryl) BODIPY-gallium(III) (BODIPY = boron-dipyrromethene) corrole dyads have been prepared in high yields using click chemistry, and their photophysical properties are reported. An original and efficient control of the direction of the singlet energy transfers is reported, going either from BODIPY to the gallium-corrole units or from gallium-corroles to BODIPY, depending upon the nature of the substitution on BODIPY. In one case (green), both directions are possible. The mechanism for the energy transfers is interpreted by means of through-space Förster resonance energy transfer (FRET).
CCDC 1429795: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585
CCDC 1429794: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585
CCDC 1429796: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585
CCDC 1429797: Experimental Crystal Structure Determination
Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585