0000000000137010

AUTHOR

Ville Tengvall

showing 12 related works from this author

Mappings of Finite Distortion : Compactness of the Branch Set

2017

We show that an entire branched cover of finite distortion cannot have a compact branch set if its distortion satisfies a certain asymptotic growth condition. We furthermore show that this bound is strict by constructing an entire, continuous, open and discrete mapping of finite distortion which is piecewise smooth, has a branch set homeomorphic to an (n - 2)-dimensional torus and distortion arbitrarily close to the asymptotic bound. Peer reviewed

General Mathematicsbranch setsCOVERS01 natural sciencesfunktioteoriaSet (abstract data type)Mathematics - Geometric TopologyDimension (vector space)DistortionFOS: Mathematics111 Mathematicsfinite distortionComplex Variables (math.CV)topologia0101 mathematicsDIMENSIONMathematicsPartial differential equationMathematics - Complex Variables010102 general mathematicsMathematical analysisGeometric Topology (math.GT)TorusCompact spaceCover (topology)57M12 30C65PiecewiseLIGHT OPEN MAPSmonistotAnalysis
researchProduct

Mappings of Lp-integrable distortion: regularity of the inverse

2016

Let be an open set in ℝn and suppose that is a Sobolev homeomorphism. We study the regularity of f–1 under the Lp-integrability assumption on the distortion function Kf. First, if is the unit ball and p > n – 1, then the optimal local modulus of continuity of f–1 is attained by a radially symmetric mapping. We show that this is not the case when p ⩽ n – 1 and n ⩾ 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for ∣Df–1∣ in terms of the Lp-integrability assumptions of Kf.

regularity of the inverseUnit sphereDistortion functionDiscrete mathematicsPure mathematicsSobolev homeomorphismGeneral Mathematicsta111010102 general mathematicsOpen setInverse01 natural sciencesModulus of continuityHomeomorphism010101 applied mathematicsSobolev spaceDistortion (mathematics)mappings of finite distortionmodulus of continuityhigher integrability0101 mathematicsMathematicsProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Approximation of W1,p Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian

2018

Let Ω ⊂ R n, n ≥ 4, be a domain and 1 ≤ p 0 on a set of positive measure and Jf < 0 on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) fk such that fk → f in W1,p . peerReviewed

Sobolev homeomorphismapproksimointiJacobian
researchProduct

On proper branched coverings and a question of Vuorinen

2022

We study global injectivity of proper branched coverings from the open Euclidean n$n$-ball onto an open subset of the Euclidean n$n$-space in the case where the branch set is compact. In particular, we show that such mappings are homeomorphisms when n=3$n=3$ or when the branch set is empty. This gives a positive answer to the corresponding cases of a question of Vuorinen. Peer reviewed

Mathematics - Complex VariablesGeneral Mathematicseuklidinen geometriaGeometric Topology (math.GT)Euclidean geometryMathematics - Geometric TopologyMAPSFOS: Mathematics111 MathematicsHigh Energy Physics::ExperimentComplex Variables (math.CV)SETMONODROMY57M12 30C65 57M30
researchProduct

Differentiability in the Sobolev space W1,n-1

2014

Let Ω ⊂ Rn be a domain, n ≥ 2. We show that a continuous, open and discrete mapping f ∈ W1,n−1 loc (Ω, Rn ) with integrable inner distortion is differentiable almost everywhere on Ω. As a corollary we get that the branch set of such a mapping has measure zero. peerReviewed

46E3528A526B1030C65
researchProduct

On BLD-mappings with small distortion

2021

We show that every $$L$$ -BLD-mapping in a domain of $$\mathbb {R}^{n}$$ is a local homeomorphism if $$L < \sqrt{2}$$ or $$K_I(f) < 2$$ . These bounds are sharp as shown by a winding map.

Pure mathematicsPartial differential equationFunctional analysisMathematics - Complex VariablesLocal homeomorphismBLD-mappings010102 general mathematicsbranch setA domain30C65 57M12 30L10quasiregular mappingsMetric Geometry (math.MG)General MedicineAlgebraic geometry01 natural scienceslocal homeomorphismMathematics::Geometric TopologyDistortion (mathematics)010104 statistics & probabilityMathematics - Metric Geometry111 MathematicsFOS: Mathematics0101 mathematicsComplex Variables (math.CV)Mathematics
researchProduct

Mappings of finite distortion : size of the branch set

2018

Abstract We study the branch set of a mapping between subsets of ℝ n {\mathbb{R}^{n}} , i.e., the set where a given mapping is not defining a local homeomorphism. We construct several sharp examples showing that the branch set or its image can have positive measure.

Applied Mathematics010102 general mathematicsbranch setsTopology01 natural sciencesSet (abstract data type)funktioteoriamappings of finite distortionDistortion0103 physical sciences010307 mathematical physics0101 mathematicsAnalysisGeometry and topologyMathematics
researchProduct

Remarks on Martio’s conjecture

2022

We introduce a certain integrability condition for the reciprocal of the Jacobian determinant whichguarantees the local homeomorphism property of quasiregular mappings with a small inner dilata-tion. This condition turns out to be sharp in the planar case. We also show that every branch pointof a quasiregular mapping with a small inner dilatation is a Lebesgue point of the differentialmatrix of the mapping. peerReviewed

matematiikka
researchProduct

Approximation of W1, Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian

2018

Abstract Let Ω ⊂ R n , n ≥ 4 , be a domain and 1 ≤ p [ n / 2 ] , where [ a ] stands for the integer part of a. We construct a homeomorphism f ∈ W 1 , p ( ( − 1 , 1 ) n , R n ) such that J f = det ⁡ D f > 0 on a set of positive measure and J f 0 on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) f k such that f k → f in W 1 , p .

Sobolev homeomorphismGeneral Mathematicsta111010102 general mathematicsA domain01 natural sciencesMeasure (mathematics)Homeomorphism010101 applied mathematicsSobolev spaceCombinatoricssymbols.namesakeIntegerJacobian matrix and determinantsymbolsPiecewise affine0101 mathematicsapproximationJacobianMathematicsAdvances in Mathematics
researchProduct

Mappings of L p -integrable distortion: regularity of the inverse

2016

Let X be an open set in R n and suppose that f : X → R n is a Sobolev homeomorphism. We study the regularity of f −1 under the L p -integrability assumption on the distortion function Kf . First, if X is the unit ball and p > n−1, then the optimal local modulus of continuity of f −1 is attained by a radially symmetric mapping. We show that this is not the case when p 6 n − 1 and n > 3, and answer a question raised by S. Hencl and P. Koskela. Second, we obtain the optimal integrability results for |Df −1 | in terms of the L p -integrability assumptions of Kf . peerReviewed

regularity of the inverseSobolev homeomorphismmappings of finite distortionmodulus of continuityhigher integrability
researchProduct

Absolute continuity of mappings with finite geometric distortion

2015

Suppose that ⊂ R n is a domain with n ≥ 2. We show that a continuous, sense-preserving, open and discrete mapping of finite geometric outer distortion with KO(·,f) ∈ L 1/(n 1) loc () is absolutely continuous on almost every line parallel to the coordinate axes. Moreover, if U ⊂ is an open set with N(f,U) 0 depends only on n and on the maximum multiplicity N(f,U).

Combinatoricsmappings of finite distortionGeneral Mathematicsta111Mathematical analysisOpen setA domainMultiplicity (mathematics)Absolute continuitymoduli inequalitiesGeometric distortionq-mappingsMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Sharpness of the differentiability almost everywhere and capacitary estimates for Sobolev mappings

2017

We give sharp conformal conditions for the dfferentiability in the Sobolev space W1, n-1 loc (Ω,Rn). Furthermore, we show that the space W1, n-1 loc (Ω,Rn) can be considered as the borderline space for some capacitary inequalities. peerReviewed

capacitymapping of finite distortionSobolev mappingsdifferentiability
researchProduct