0000000000137875
AUTHOR
F. Robert
Resonant wavelength control of a 1.3 µm microcavity by intracavity steam oxidation
Constitutive expression of clathrin hub hinders elicitor-induced clathrin-mediated endocytosis and defense gene expression in plant cells.
International audience; Endocytosis has been recently implicated in the signaling network associated with the recognition of microbes by plants. In a previous study, we showed that the elicitor cryptogein was able to induce clathrin-mediated endocytosis (CME) in tobacco suspension cells. Herein, we investigate further the induced CME by means of a GFP-tagged clathrin light chain and a CME inhibitor, the hub domain of clathrin heavy chain. Hub constitutive expression does affect neither cell growth nor constitutive endocytosis but abolishes cryptogein-induced CME. Such an inhibition has no impact on early events in the cryptogein signaling pathway but reduces the expression of defense-associ…
Selective modification of bandgap in GaInNAs/GaAs structures by quantum well intermixing
Microreflectivity studies of wavelength control in oxidised AlGaAs microcavity
Characterization of selective quantum well intermixing in 1.3 µm GaInNAs/GaAs structures
Microreflectivity studies of wavelength control in oxidised AlGaAs microcavities
Wet oxidation of GaAs/AlGaAs structures is an important technique in the processing of advanced devices such as vertical cavity surface emitting lasers (VCSELs). In one VCSEL application, the low-index and electrically-insulating AlxOy layers have been used to obtain high-reflectivity and broad bandwidth distributed Bragg reflector mirrors (DBRs). A further recent development has shown that combined lateral–vertical oxidation of intracavity AlGaAs layers can be used to tune the resonant wavelength of a semiconductor microcavity. The slow oxidation rate limits the lateral scale of practical wet oxidation to mesas structures of 50–100 μm in width. Therefore post-processing assessment of spect…
Selective modification of the band gaps of GaInNas/GaAs structures by quantum well intermixing techniques
We report the unambiguous demonstration of controlled quantum well intermixing (QWI) in the technologically important GaInNAs/ GaAs 1.3 mum material system. QWI is a key technique to selectively modify the band gap of quantum wells, which has found broad application in semiconductor lasers and photonic integrated circuits (PICs). Extending such technology to GaInNAs/GaAs structures is highly desirable due to the technologically advantageous properties of this material system. Here, we investigate well-characterized GaInNAs quantum well material which has been annealed "to saturation" before QWI processing to allow unambiguous interpretation of results. After RTA at 700 degreesC for similar …
Selective modification of bandgaps of GaInNAs/GaAs structures by quantum well intermixing techniques
Quantum well intermixing in GaInNAs/GaAs structures
We report on the characteristics of quantum well intermixing in GaInNAs/GaAs structures of differing N content. Rapid thermal annealing combined with SiO2 caps deposited on the surface of the samples is used to disorder 1.3 mum GaInNAs/GaAs multiquantum wells which have been preannealed in-situ to the stage of blueshift saturation. The different effects of two capping layer deposition techniques on the interdiffusion of In-Ga have been compared, particular regarding the role of sputtering processes. The dependence of quantum well intermixing-induced photoluminescence blueshift on N concentration has provided extra information on the intrinsic properties of the GaInNAs/GaAs material system. …