0000000000139685

AUTHOR

Mariangela Storto

Inhibition of Fibroblast Growth Factor-23 (FGF-23) Rescues Bone and Hematopoietic Stem Cell Niche Defects in Beta-Thalassemia, Uncovering the Missing Link between Hematopoiesis and Bone

Abstract The bone marrow (BM) niche regulation and interactions with hematopoietic stem cells (HSC) have been extensively studied in steady state conditions and malignancies, but are still underexplored in hematological inherited disorders. We provided the first demonstration of impaired HSC function caused by an altered BM niche in a non-malignant disease, beta-thalassemia (BT) (Aprile et al., Blood 2020). BT is a globally widespread congenital hemoglobin disorder, resulting in severe anemia, ineffective erythropoiesis and multi-organ secondary complications, including bone alterations. Correction of the genetic defect is achieved by transplantation of HSC from healthy donors or autologous…

research product

Hematopoietic stem cell function in b-thalassemia is impaired and is rescued by targeting the bone marrow niche

Abstract Hematopoietic stem cells (HSCs) are regulated by signals from the bone marrow (BM) niche that tune hematopoiesis at steady state and in hematologic disorders. To understand HSC-niche interactions in altered nonmalignant homeostasis, we selected β-thalassemia, a hemoglobin disorder, as a paradigm. In this severe congenital anemia, alterations secondary to the primary hemoglobin defect have a potential impact on HSC-niche cross talk. We report that HSCs in thalassemic mice (th3) have an impaired function, caused by the interaction with an altered BM niche. The HSC self-renewal defect is rescued after cell transplantation into a normal microenvironment, thus proving the active role of…

research product

Tumor-Derived Prostaglandin E2 Promotes p50 NF-κB-Dependent Differentiation of Monocytic MDSCs

Abstract Myeloid-derived suppressor cells (MDSC) include immature monocytic (M-MDSC) and granulocytic (PMN-MDSC) cells that share the ability to suppress adaptive immunity and to hinder the effectiveness of anticancer treatments. Of note, in response to IFNγ, M-MDSCs release the tumor-promoting and immunosuppressive molecule nitric oxide (NO), whereas macrophages largely express antitumor properties. Investigating these opposing activities, we found that tumor-derived prostaglandin E2 (PGE2) induces nuclear accumulation of p50 NF-κB in M-MDSCs, diverting their response to IFNγ toward NO-mediated immunosuppression and reducing TNFα expression. At the genome level, p50 NF-κB promoted binding …

research product

Nicotinamide Phosphoribosyltransferase Acts as a Metabolic Gate for Mobilization of Myeloid-Derived Suppressor Cells

Abstract Cancer induces alteration of hematopoiesis to fuel disease progression. We report that in tumor-bearing mice the macrophage colony-stimulating factor elevates the myeloid cell levels of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway, which acts as negative regulator of the CXCR4 retention axis of hematopoietic cells in the bone marrow. NAMPT inhibits CXCR4 through a NAD/Sirtuin 1–mediated inactivation of HIF1α-driven CXCR4 gene transcription, leading to mobilization of immature myeloid-derived suppressor cells (MDSC) and enhancing their production of suppressive nitric oxide. Pharmacologic inhibition or myeloid-specific ablation …

research product