6533b82afe1ef96bd128c15e

RESEARCH PRODUCT

Hematopoietic stem cell function in b-thalassemia is impaired and is rescued by targeting the bone marrow niche

Alessandro RubinacciMariangela StortoMaria Rosa LidonniciStefano BerettaIvan MerelliAnnamaria AprileSarah MarktelAlessandro GulinoIsabella VillaClaudio TripodoMaurilio PonzoniGiuliana Ferrari

subject

MaleStromal cellImmunologybone marrow mice thalassemia hematopoietic stem cells transplantation parathyroid hormoneSettore MED/08 - Anatomia PatologicaBiochemistryBone remodelingMiceBone MarrowmedicineAnimalsHumansOsteopontinStem Cell NicheHematopoietic stem cell β-thalassemia the bone marrow nichebiologybeta-ThalassemiaHematopoietic stem cellCell BiologyHematologyHematopoietic Stem CellsHematopoiesisMice Inbred C57BLTransplantationHaematopoiesismedicine.anatomical_structurebiology.proteinCancer researchFemaleBone marrowStem cell

description

Abstract Hematopoietic stem cells (HSCs) are regulated by signals from the bone marrow (BM) niche that tune hematopoiesis at steady state and in hematologic disorders. To understand HSC-niche interactions in altered nonmalignant homeostasis, we selected β-thalassemia, a hemoglobin disorder, as a paradigm. In this severe congenital anemia, alterations secondary to the primary hemoglobin defect have a potential impact on HSC-niche cross talk. We report that HSCs in thalassemic mice (th3) have an impaired function, caused by the interaction with an altered BM niche. The HSC self-renewal defect is rescued after cell transplantation into a normal microenvironment, thus proving the active role of the BM stroma. Consistent with the common finding of osteoporosis in patients, we found reduced bone deposition with decreased levels of parathyroid hormone (PTH), which is a key regulator of bone metabolism but also of HSC activity. In vivo activation of PTH signaling through the reestablished Jagged1 and osteopontin levels correlated with the rescue of the functional pool of th3 HSCs by correcting HSC-niche cross talk. Reduced HSC quiescence was confirmed in thalassemic patients, along with altered features of the BM stromal niche. Our findings reveal a defect in HSCs in β-thalassemia induced by an altered BM microenvironment and provide novel and relevant insight for improving transplantation and gene therapy approaches.

10.1182/blood.2019002721http://hdl.handle.net/10281/311004