0000000000139744

AUTHOR

Jens Langhanki

showing 10 related works from this author

Silver Oxide Mediated Monotosylation of Poly(ethylene glycol) (PEG): Heterobifunctional PEG via Polymer Desymmetrization

2017

Heterobifunctional poly(ethylene glycol)s (PEGs) are key structures for bioconjugation in the context of the “PEGylation” strategy to enhance blood circulation times of, for example, peptide drugs or “stealth” liposomes. The formation of heterobifunctional PEGs from symmetric PEG diols is challenging because of limited yields of the targeted monofunctional product and difficulties associated with separation steps. On the basis of a detailed comparison of reaction conditions, we have investigated a “polymer desymmetrization” strategy to maximize the yields of monofunctional PEG tosylate. The tosylation reaction in the presence of the heterogeneous catalyst silver oxide and potassium iodide i…

BioconjugationPolymers and PlasticsOrganic Chemistrytechnology industry and agricultureContext (language use)02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesDesymmetrization0104 chemical sciencesCatalysisInorganic Chemistrychemistry.chemical_compoundchemistryPEG ratioPolymer chemistryMaterials ChemistryPEGylation0210 nano-technologyEthylene glycolSilver oxideMacromolecules
researchProduct

Carbohydrate-Based Nanocarriers Exhibiting Specific Cell Targeting with Minimum Influence from the Protein Corona.

2015

Whenever nanoparticles encounter biological fluids like blood, proteins adsorb on their surface and form a so-called protein corona. Although its importance is widely accepted, information on the influence of surface functionalization of nanocarriers on the protein corona is still sparse, especially concerning how the functionalization of PEGylated nanocarriers with targeting agents will affect protein corona formation and how the protein corona may in turn influence the targeting effect. Herein, hydroxyethyl starch nanocarriers (HES-NCs) were prepared, PEGylated, and modified on the outer PEG layer with mannose to target dendritic cells (DCs). Their interaction with human plasma was then s…

endocrine systemDrug CarriersChemistryNanoparticleMannoseProtein CoronaGeneral ChemistryDendritic CellsCatalysisPolyethylene GlycolsHydroxyethyl Starch Derivativeschemistry.chemical_compoundDrug Delivery SystemsBiochemistryDrug deliveryPEG ratioBiophysicsSurface modificationHumansNanoparticlesProtein CoronaNanocarriersMannoseProtein adsorptionAngewandte Chemie (International ed. in English)
researchProduct

Bioconjugation of Small Molecules to RNA Impedes Its Recognition by Toll-Like Receptor 7

2017

A fundamental mechanism of the innate immune system is the recognition, via extra- and intracellular pattern recognition receptors, of pathogen-associated molecular patterns. A prominent example is represented by foreign nucleic acids, triggering the activation of several signaling pathways. Among these, the endosomal toll-like receptor 7 (TLR7) is known to be activated by single stranded RNA (ssRNA), which can be specifically influenced through elements of sequence structure and posttranscriptional modifications. Furthermore, small molecules TLR7 agonists (smTLRa) are applied as boosting adjuvants in vaccination processes. In this context, covalent conjugations between adjuvant and vaccine…

0301 basic medicineMessenger RNAGene knockdownToll-like receptormRNAImmunologyPattern recognition receptorRNATLR7BiologyMolecular biologyCell biology03 medical and health sciencessmall molecules030104 developmental biologysiRNAclick chemistryNucleic acidImmunology and Allergytoll-like receptorimmunostimulationbioconjugateSingle-Stranded RNAOriginal ResearchFrontiers in Immunology
researchProduct

Targeting of immune cells with trimannosylated liposomes

2020

PharmacologyLiposome540 Chemistry and allied sciencesbiologyChemistryBiochemistry (medical)Pharmaceutical ScienceMedicine (miscellaneous)Cell biology570 Life sciencesDC-SIGNImmune system540 Chemiebiology.proteinPharmacology (medical)Genetics (clinical)570 Biowissenschaften
researchProduct

Kohlenhydrat-basierte Nanocarrier mit spezifischem Zell-Targeting und minimalem Einfluss durch die Proteinkorona

2015

Sobald Nanopartikel mit biologischen Flussigkeiten wie Blut in Kontakt kommen, adsorbieren Proteine auf ihrer Oberflache, welche die sogenannte Proteinkorona ausbilden. Die Wichtigkeit dieser Proteinhulle ist weitgehend anerkannt, jedoch untersuchen nur wenige Studien den Einfluss von Oberflachenfunktionalisierung der Nanocarrier auf die Proteinkorona. Vor allem die Variation der Proteinkorona von PEGylierten und zusatzlich mit Targeting-Molekulen versehenen Nanotragern und der Einfluss auf das Targeting sind nicht bekannt. Hydroxyethylstarke-Nanocarrier (HES-NCs) wurden synthetisiert, anschliesend PEGyliert und zusatzlich (“on top”) mit Mannose funktionalisiert, um dendritische Zellen (DCs…

General MedicineAngewandte Chemie
researchProduct

Noncovalent Targeting of Nanocarriers to Immune Cells with Polyphosphoester‐Based Surfactants in Human Blood Plasma

2019

Abstract Dendritic cells (DCs) are part of the immune system and can internalize pathogens by carbohydrate receptors. The uptake induces maturation and migration of the DCs resulting in an adaptive immune response by presenting antigens to T‐cells. Thus, targeted delivery to DCs is a powerful tool for immunotherapy. However, in blood, specific targeting is challenging as blood proteins adsorb to the nanocarriers and mask the targeting molecules. Additionally, covalent coupling of targeting groups to nanocarriers requires new chemistry for each nanocarrier, while a general strategy is missing. A general protocol by noncovalent adsorption of mannosylated polyphosphoesters (PPEs) on the nanoca…

Low proteinGeneral Chemical Engineeringmedicine.medical_treatmentGeneral Physics and AstronomyMedicine (miscellaneous)Protein Corona02 engineering and technology010402 general chemistry01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)targeted drug deliveryImmune systemprotein coronaAntigenmedicineGeneral Materials Sciencedendritic cellslcsh:Sciencestealth effectFull PaperChemistryGeneral EngineeringImmunotherapyring‐opening polymerizationFull Papers021001 nanoscience & nanotechnologyAcquired immune system0104 chemical sciencesTargeted drug deliveryBiophysicslcsh:QNanocarriers0210 nano-technologyAdvanced Science
researchProduct

HPMA-Based Nanocarriers for Effective Immune System Stimulation.

2019

The selective activation of the immune system using nanoparticles as a drug delivery system is a promising field in cancer therapy. Block copolymers from HPMA and laurylmethacrylate-co-hymecromone-methacrylate allow the preparation of multifunctionalized core-crosslinked micelles of variable size. To activate dendritic cells (DCs) as antigen presenting cells, the carbohydrates mannose and trimannose are introduced into the hydrophilic corona as DC targeting units. To activate DCs, a lipophilic adjuvant (L18-MDP) is incorporated into the core of the micelles. To elicit an immune response, a model antigen peptide (SIINFEKL) is attached to the polymeric nanoparticle-in addition-via a click rea…

AzidesPolymers and PlasticsOvalbuminPolymersMannoseBioengineering02 engineering and technology010402 general chemistry01 natural sciencesMicelleBiomaterialschemistry.chemical_compoundDrug Delivery SystemsAntigenAdjuvants ImmunologicMaterials ChemistryHumansParticle SizeAntigen-presenting cellMicellesMannanChemistryDendritic Cells021001 nanoscience & nanotechnologyPeptide Fragments0104 chemical sciencesImmune SystemDrug deliveryBiophysicsMethacrylatesNanoparticlesClick ChemistryNanocarriers0210 nano-technologyHydrophobic and Hydrophilic InteractionsMannose receptorBiotechnologyMacromolecular bioscience
researchProduct

Total synthesis and biological evaluation of the natural product (−)-cyclonerodiol, a new inhibitor of IL-4 signaling

2014

In a screening program of natural compounds from fungi, the known cyclopentanoid sesquiterpene (-)-cyclonerodiol was identified as a specific inhibitor of the IL-4 induced STAT6 signaling pathway (IC50 = 9.7 μM) which is required for the differentiation of naive CD4 T cells to T helper type 2 (Th2) lymphocytes. As many allergic conditions, including allergic asthma and atopic diseases, are driven by an excessive Th2 response, STAT6 is a promising target for the development of new therapeutics. The compound was synthesized in six steps from (-)-linalool using an epoxide radical cyclization as the key step.

Acyclic MonoterpenesSesquiterpeneBiochemistryRadical cyclizationCell Linechemistry.chemical_compoundAnti-Allergic AgentsHumansPhysical and Theoretical ChemistryIC50Interleukin 4STAT6Natural productOrganic ChemistryTotal synthesisAsthmachemistryBiochemistryCyclizationImmunologyMonoterpenesInterleukin-4Signal transductionSTAT6 Transcription FactorSesquiterpenesSignal TransductionOrg. Biomol. Chem.
researchProduct

Multivalency Beats Complexity: A Study on the Cell Uptake of Carbohydrate Functionalized Nanocarriers to Dendritic Cells.

2020

Herein, we report the synthesis of carbohydrate and glycodendron structures for dendritic cell targeting, which were subsequently bound to hydroxyethyl starch (HES) nanocapsules prepared by the inverse miniemulsion technique. The uptake of the carbohydrate-functionalized HES nanocapsules into immature human dendritic cells (hDCs) revealed a strong dependence on the used carbohydrate. A multivalent mannose-terminated dendron was found to be far superior in uptake compared to the structurally more complex oligosaccharides used.

CellcarbohydratesBlood DonorsHydroxyethyl starch010402 general chemistryLigands01 natural sciencesNanocapsulesArticleHydroxyethyl Starch DerivativesDrug Delivery SystemsDendrimermedicineHumanslcsh:QH301-705.5Cells Cultured010405 organic chemistryChemistrynanocapsulesBiological TransportGeneral MedicineDendritic cellDendritic CellsCarbohydrate0104 chemical sciencesMiniemulsionmedicine.anatomical_structurelcsh:Biology (General)BiophysicsglycodendronsNanocarrierscell targetingmedicine.drugCells
researchProduct

“Clickable PEG” via anionic copolymerization of ethylene oxide and glycidyl propargyl ether

2017

A straight forward synthesis of poly(ethylene glycol) (PEG) with multiple alkyne groups distributed along the polymer chain is introduced. Direct access to clickable PEG is achieved by the monomer-activated anionic ring-opening copolymerization (AROP) of ethylene oxide (EO) with glycidyl propargyl ether (GPgE). Notably for successful polymerization no protection of the alkyne unit is required owing to the mild reaction conditions. Defined PEG-co-PGPgE and PGPgE (co)polymers with PDIs of 1.18–1.60 and molecular weights of Mn = 3000–9500 g mol−1 were prepared. In situ1H NMR kinetic studies revealed remarkably disparate reactivity ratios of rEO = 14.8 and rGPgE = 0.076, representing a pronounc…

chemistry.chemical_classificationPolymers and PlasticsEthylene oxideOrganic Chemistrytechnology industry and agricultureAlkyneBioengineering02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistry0104 chemical scienceschemistry.chemical_compoundMonomerchemistryPolymerizationPEG ratioPolymer chemistryCopolymerAzide0210 nano-technologyEthylene glycolPolymer Chemistry
researchProduct