0000000000139983
AUTHOR
David Huesmann
Synthesis of gold nanotubes with variable wall thicknesses
We report the synthesis of gold nanotubes with variable wall thicknesses that is accomplished by the deposition of sacrificial hydrophobic polymer cores followed by gold shells within an anodic aluminum oxide template. We demonstrate that by varying polymer core hydrophobicity, the resulting gold shell thickness can be varied. There are two requirements for gold shell formation: (1) the polymer core must be able to be electrodeposited into a tubular (as opposed to wire-like) structure, and (2) the polymer must be hydrophobic, such that it collapses upon exposure to an aqueous solution. An array of gold nanotubes has variable plasmonic properties and can function as a surface enhanced Raman …
Combining Orthogonal Reactive Groups in Block Copolymers for Functional Nanoparticle Synthesis in a Single Step.
We report on the synthesis of polysarcosine-block-poly(S-alkylsulfonyl)-l-cysteine block copolymers, which combine three orthogonal addressable groups enabling site-specific conversion of all reactive entities in a single step. The polymers are readily obtained by ring-opening polymerization (ROP) of corresponding α-amino acid N-carboxyanhydrides (NCAs) combining azide and amine chain ends, with a thiol-reactive S-alkylsulfonyl cysteine. Functional group interconversion of chain ends using strain-promoted azide–alkyne cycloaddition (SPAAC) and activated ester chemistry with NHS- and DBCO-containing fluorescent dyes could be readily performed without affecting the cross-linking reaction betw…
Poly(S-ethylsulfonyl-l-cysteines) for Chemoselective Disulfide Formation
The amino acid cysteine possesses a unique role in nature due to its ability to reversibly cross-link proteins. To transfer this feature to polypeptides and control the process of disulfide formation, a protective group needs to provide stability against amines during synthesis, combined with chemoselective reactivity toward thiols. A protective group providing these unique balance of stability and reactivity toward different nucleophiles is the S-alkylsulfonyl group. In this work we report the polymerization of S-ethylsulfonyl-l-cysteine N-carboxyanhydride and kinetic evaluations with respect to temperature (−10, 0, and +10 °C) and monomer concentration. The polymerization degree of poly(S…
Revisiting Secondary Structures in NCA Polymerization: Influences on the Analysis of Protected Polylysines
Two series (degree of polymerization: 20–200) of polylysines with Z and TFA protecting groups were synthesized, and their behavior in a range of analytical methods was investigated. Gel permeation chromatography of the smaller polypeptides reveals a bimodal distribution, which is lost in larger polymers. With the help of GPC, NMR, circular dichroism (CD), and MALDI-TOF, it was demonstrated that the bimodal distribution is not due to terminated chains or other side reactions. Our results indicate that the bimodality is caused by a change in secondary structure of the growing peptide chain that occurs around a degree of polymerization of about 15. This change in secondary structure interferes…
Rethinking Cysteine Protective Groups:S-Alkylsulfonyl-l-Cysteines for Chemoselective Disulfide Formation
The ability to reversibly cross-link proteins and peptides grants the amino acid cysteine its unique role in nature as well as in peptide chemistry. We report a novel class of S-alkylsulfonyl-l-cysteines and N-carboxy anhydrides (NCA) thereof for peptide synthesis. The S-alkylsulfonyl group is stable against amines and thus enables its use under Fmoc chemistry conditions and the controlled polymerization of the corresponding NCAs yielding well-defined homo- as well as block co-polymers. Yet, thiols react immediately with the S-alkylsulfonyl group forming asymmetric disulfides. Therefore, we introduce the first reactive cysteine derivative for efficient and chemoselective disulfide formation…
Cover Picture: Macromol. Biosci. 10/2014
Introducing PeptoPlexes: Polylysine-block-Polysarcosine Based Polyplexes for Transfection of HEK 293T Cells
A series of well-defined polypeptide-polypeptoid block copolymers based on the body's own amino acids sarcosine and lysine are prepared by ring opening polymerization of N-carboxyanhydrides. Block lengths were varied between 200-300 for the shielding polysarcosine block and 20-70 for the complexing polylysine block. Dispersity indexes ranged from 1.05 to 1.18. Polylysine is polymerized with benzyloxycarbonyl as well as trifluoroacetyl protecting groups at the ϵ-amine group and optimized deprotection protocols for both groups are reported. The obtained block ionomers are used to complex pDNA resulting in the formation of polyplexes (PeptoPlexes). The PeptoPlexes can be successfully applied i…
Template-synthesized nanostructure morphology influenced by building block structure
We report the synthesis and characterization of a series of nanostructures and determine whether several distinct types of building blocks can be fashioned into linear nanostructures using hard-templates and electrochemical methods. We determine the aspects of molecular structure that influence morphology and propose a mechanism whereby morphology changes as a function of building block. We show how hydrophobic side-chains, such as 3-hexyl and 3-(2-ethyl)hexyl, can be used to prepare nanostructures with a geometry that is different from the shape of the template from which they derive. These nanostructures exhibit collapsed, nonlinear, and nonrigid shapes as observed by SEM and TEM. Hydroph…
Characterization of Polypeptides and Polypeptoides - Methods and Challenges
Sekundärstrukturbildung als Triebkraft für die Selbstorganisation reaktiver Polypept(o)ide: Steuerung von Größe, Form und Funktion kernvernetzter Nanostrukturen
Prazise Kontrolle uber Morphologie und Funktion polymerer Nanostrukturen im Rahmen der Selbstorganisation stellt nach wie vor eine Herausforderung im Feld der Material- und biomedizinischen Wissenschaften dar, insbesondere wenn unabhangige Kontrolle uber einzelne Partikeleigenschaften erwunscht ist. Hier wird uber Sekundarstruktur-gesteuerte Selbstorganisation von Nanostrukturen basierend auf amphiphilen Blockcopolypept(o)iden berichtet und eine Strategie zur bio-reversiblen Einstellung der Kernpolaritat und –funktion unabhangig von der Partikelpraparation vorgestellt. Der Peptiden eigene Prozess der Sekundarstrukturbildung erlaubt so die Herstellung spharischer und wurmartiger kernvernetzt…
Bioreducible Poly-l-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT-Polymerization as Efficient Polyplex-Transfection Reagents
Polylysine-b-p[HPMA] block copolymers containing a redox-responsive disulfide bond between both blocks are synthesized by RAFT polymerization of pentafluorphenyl-methacrylate with a macro-CTA from Nϵ-benzyloxycarbonyl (Cbz) protected polylysine (synthesized by NCA polymerization). This polylysine-b-p[PFMA] precursor block copolymer is converted to polylysine(Cbz)-b-p[HPMA] by postpolymerization modification with 2-hydroxypropylamine. After removal of the Cbz protecting group, cationic polylysine-b-p[HPMA] copolymers with a biosplittable disulfide moiety became available, which can be used as polymeric transfection vectors. These disulfide linked polylysine-S-S-b-p[HPMA] block copolymers sho…
Polypeptoid-block-polypeptide Copolymers: Synthesis, Characterization, and Application of Amphiphilic Block Copolypept(o)ides in Drug Formulations and Miniemulsion Techniques
We report the synthesis of polysarcosine-block-polyglutamic acid benzylester (PSar-block-PGlu(OBn)) and polysarcosine-block-polylysine-ε-N-benzyloxycarbonyl (PSar-block-PLys(Z)) copolymers. The novel polypeptoid-block-polypeptide copolymers (Copolypept(o)ides) have been synthesized by ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs). Polymerization conditions were optimized regarding protecting groups, block sequence and length. While the degree of polymerization of the PSar block length was set to be around 200 or 400, PGlu(OBn) and PLys(Z) block lengths were varied between 20 to 75. The obtained block copolymers had a total degree of polymerization of 220-475 and dispersity…
Exploring new activating groups for reactive cysteine NCAs
Abstract Due to its ability to reversibly crosslink proteins, cysteine has a unique role as an amino acid in nature. For controlled, asymmetric formation of disulfides from two thiols, one thiol needs to be activated. While few activating groups for cysteine have been proposed, they are usually not stable against amines making them unsuitable for solid phase peptide synthesis or amine initiated polymerization of α-amino acid-N-carboxy-anhydrides (NCAs). In this Letter we describe a series of new thiol activated cysteines, as well as their NCAs and explore the link between electron deficiency of the leaving group and control over NCA polymerization.
Orthogonally reactive amino acids and end groups in NCA polymerization
Functional amino acids whose reactivity is compatible with the polymerization of α-amino acid-N-carboxyanhydrides (NCAs) have received a lot of attention in recent years. The appeal of these reactive monomers lies in the fact that the resulting polymers can be easily modified in one controlled post-polymerization step, leading to a variety of polypeptidic materials like helical non-natural polycations or glycopeptides. This review highlights recent developments in the field and focuses on the different reactive groups like alkynes, alkenes, azides, chlorides and S-alkylsulfonyls. Furthermore, the modifications after polymerization are discussed, pointing out advantages and challenges. Besid…
From Polymers to Nanomedicines: New Materials for Future Vaccines
Nanomedicine is the medical application of nanotechnology and therefore covers various kinds of nanoparticles. In this chapter, we would like to provide a brief introduction and overview of nanoparticles for the modulation of the immune system. In general, these nano-sized objects can be inorganic colloids, organic colloids (synthesized by emulsion polymerization or mini-/nanoemulsion techniques), polymeric aggregates (micelles or polymersomes), core cross-linked aggregates (nanohydrogels, crosslinked micelles, or polyplexes), multifunctional polymer coils, dendritic polymers or perfect dendrimers. A special focus is set on polymeric materials, because the chemical composition of the partic…
A head-to-head comparison of poly(sarcosine) and poly(ethylene glycol) in peptidic, amphiphilic block copolymers
Abstract In this work we compare chemical and solution properties, like critical aggregate concentrations (CAC) and hydrodynamic radii of aggregates based on either poly(ethylene glycol) or poly(sarcosine) block copolymers in aqueous solution. The amine functionalized, hydrophilic polymers poly(sarcosine) (degree of polymerization, X n = 100 and 200) and PEG (X n = 121 and 242) of comparable hydrodynamic volume were used to initiate the ring opening polymerization of α-amino acid- N -carboxyanhydrides based on ɣ-benzyl- l -glutamate (Glu(OBn)) or e-carboxybenzyl- l -lysine (Lys(Z)). The second, hydrophobic block was kept at a degree of polymerization of 25 and 50 to enable a direct compar…
Secondary-Structure-Driven Self-Assembly of Reactive Polypept(o)ides: Controlling Size, Shape, and Function of Core Cross-Linked Nanostructures.
Achieving precise control over the morphology and function of polymeric nanostructures during self-assembly remains a challenge in materials as well as biomedical science, especially when independent control over particle properties is desired. Herein, we report on nanostructures derived from amphiphilic block copolypept(o)ides by secondary-structure-directed self-assembly, presenting a strategy to adjust core polarity and function separately from particle preparation in a bioreversible manner. The peptide-inherent process of secondary-structure formation allows for the synthesis of spherical and worm-like core-cross-linked architectures from the same block copolymer, introducing a simple y…
CCDC 1440862: Experimental Crystal Structure Determination
Related Article: Olga Schäfer, David Huesmann, Christian Muhl, Matthias Barz|2016|Chem.-Eur.J.|22|18085|doi:10.1002/chem.201604391
CCDC 1440861: Experimental Crystal Structure Determination
Related Article: Olga Schäfer, David Huesmann, Christian Muhl, Matthias Barz|2016|Chem.-Eur.J.|22|18085|doi:10.1002/chem.201604391