0000000000140381

AUTHOR

Antje Brack

Kinetic properties of hexameric tyrosinase from the crustacean Palinurus elephas.

Tyrosinases catalyze hydroxylation of monophenols to o-diphenols and their subsequent oxidation to o-quinones, whereas catecholoxidases catalyze only the latter reaction. Both enzymes occur in all organisms and are Type 3 copper proteins that perform the first steps of melanin formation. In arthropods, they play an essential role in the sclerotization of the exoskeleton. Very few phenoloxidases are characterized structurally or kinetically and the existence of an actual tyrosinase activity has not been demonstrated in most cases. Here we present for the first time a complete kinetic characterization of a tyrosinase from a crustacean (Palinurus elephas) including the influence of inhibitors.…

research product

Evidence that clustered phosphocholine head groups serve as sites for binding and assembly of an oligomeric protein pore.

High susceptibility of rabbit erythrocytes toward the pore-forming action of staphylococcal alpha-toxin correlates with the presence of saturable, high affinity binding sites. All efforts to identify a protein or glycolipid receptor have failed, and the fact that liposomes composed solely of phosphatidylcholine are efficiently permeabilized adds to the enigma. A novel concept is advanced here to explain the puzzle. We propose that low affinity binding moieties can assume the role of high affinity binding sites due to their spatial arrangement in the membrane. Evidence is presented that phosphocholine head groups of sphingomyelin, clustered in sphingomyelin-cholesterol microdomains, serve th…

research product

Lipid and phase specificity of α-toxin from S. aureus

AbstractThe pore forming toxin Hla (α-toxin) from Staphylococcus aureus is an important pathogenic factor of the bacterium S. aureus and also a model system for the process of membrane-induced protein oligomerisation and pore formation. It has been shown that binding to lipid membranes at neutral or basic pH requires the presence of a phosphocholine-headgroup. Thus, sphingomyelin and phosphatidylcholine may serve as interaction partners in cellular membranes. Based on earlier studies it has been suggested that rafts of sphingomyelin are particularly efficient in toxin binding. In this study we compared the oligomerisation of Hla on liposomes of various lipid compositions in order to identif…

research product

Effects of ultrahigh dilutions of 3,5-dichlorophenol on the luminescence of the bacterium Vibrio fischeri.

Abstract There is a great need for research in the field of homeopathy for laboratory test systems to investigate the actions of ultrahighly diluted biological effectors. With this in mind, we used the luminescent bacterium Vibrio fischeri, which is used throughout the world in testing water quality. Luminescence inhibition is utilized as a test parameter for the toxicity of a sample. We used ultrahigh dilutions (UHD) of 3,5-dichlorophenol as effector and adapted the standard test procedure for water toxicity in a way that let us evaluate very minute effects. Three groups of samples were prepared and then blinded: 45 dilutions of 3,5-dichlorophenol in steps of 10, starting with 4.2×10−2 M, …

research product

Structural characterization of the α-hemolysin monomer fromStaphylococcus aureus

α-Hemolysin from Staphylococcus aureus is secreted as a water-soluble monomer and assembles on membranes to oligomerize into a homo-heptameric, water-filled pore. These pores lead to lysis and cell death. Although the structure of the heptameric pore is solved by means of X-ray crystallography, structures of intermediate states—from the soluble monomer to all potential “pre-pore” structures—are yet unknown. Here, we propose a model of the monomeric α-hemolysin in solution based on molecular modeling, verified by small angle X-ray scattering data. This structure reveals details of the monomeric conformation of the α-hemolysin, for example inherent flexibility, along with definite differences…

research product