6533b855fe1ef96bd12afde8

RESEARCH PRODUCT

Lipid and phase specificity of α-toxin from S. aureus

Antje BrackMarkus SchwieringR. StorkNadja Hellmann

subject

Staphylococcus aureusPore formationLiquid ordered phaseBacterial ToxinsLipid BilayersBiophysicsBiologyBiochemistryPhase Transitionchemistry.chemical_compoundHemolysin ProteinsMembrane LipidsMembrane MicrodomainsPhosphatidylcholineBinding siteLipid raftUnilamellar LiposomesPore-forming toxinLiposomeArtificial membranesBinding SitesCell MembraneOligomerisationCell BiologyS. aureusSphingomyelinsMembraneBiochemistrychemistryMicroscopy FluorescenceMutationPhosphatidylcholineslipids (amino acids peptides and proteins)Protein MultimerizationToxinSphingomyelin

description

AbstractThe pore forming toxin Hla (α-toxin) from Staphylococcus aureus is an important pathogenic factor of the bacterium S. aureus and also a model system for the process of membrane-induced protein oligomerisation and pore formation. It has been shown that binding to lipid membranes at neutral or basic pH requires the presence of a phosphocholine-headgroup. Thus, sphingomyelin and phosphatidylcholine may serve as interaction partners in cellular membranes. Based on earlier studies it has been suggested that rafts of sphingomyelin are particularly efficient in toxin binding. In this study we compared the oligomerisation of Hla on liposomes of various lipid compositions in order to identify the preferred interaction partners and conditions. Hla seems to have an intrinsic preference for sphingomyelin compared to phosphatidylcholine due to a higher probability of oligomerisation of membrane bound monomer. We also can show that increasing the surface density of Hla-binding sites enhances the oligomerisation efficiency. Thus, preferential binding to lipid rafts can be expected in the cellular context. On the other hand, sphingomyelin in the liquid disordered phase is a more favourable binding partner for Hla than sphingomyelin in the liquid ordered phase, which makes the membrane outside of lipid rafts the more preferred region of interaction. Thus, the partitioning of Hla is expected to strongly depend on the exact composition of raft and non-raft domains in the membrane.

10.1016/j.bbamem.2013.04.005http://dx.doi.org/10.1016/j.bbamem.2013.04.005