0000000000140420

AUTHOR

José Manuel López

showing 13 related works from this author

Promoting Deoxygenation of Bio-Oil by Metal-Loaded Hierarchical ZSM-5 Zeolites

2016

3 Figuras.- 5 tablas.-1 Esquema.- This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Sustainable Chemistry & Engineering, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acssuschemeng.5b01606 ”

Bio-oil upgradingGeneral Chemical EngineeringInorganic chemistryLignocellulosic biomass02 engineering and technology01 natural sciencesCatalysisEnvironmental ChemistryOrganic chemistryLewis acids and basesZeoliteMetal loadingDeoxygenationIon exchange010405 organic chemistryRenewable Energy Sustainability and the EnvironmentChemistryDecarbonylationDeoxygenationGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesZSM-50210 nano-technologyHierarchical ZSM-5 zeoliteACS Sustainable Chemistry & Engineering
researchProduct

Insights into the catalytic production of hydrogen from propane in the presence of oxygen: Cooperative presence of vanadium and gold catalysts

2015

7 figures.-- © 2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Vanadium and gold catalystsHydrogenGeneral Chemical EngineeringInorganic chemistryEnergy Engineering and Power Technologychemistry.chemical_elementVanadiumHydrogen catalytic productionPhotochemistryWater-gas shift reactionVanadium oxideCatalysischemistry.chemical_compoundFuel TechnologyVanadium oxidechemistryPropaneDehydrogenationGoldPropane oxidationWGSHydrogen production
researchProduct

The key role of nanocasting in gold-based Fe2 O3 nanocasted catalysts for oxygen activation at the metal-support interface

2019

5 Tablas.- 10 Figuras.- This is the peer reviewed version of the following article: The key role of nanocasting in gold‐based Fe2O3 nanocasted catalysts for oxygen activation at the metal‐support interface, ChemCatChem 11: 1915-1927 (2019), which has been published in final form at http://dx.doi.org/10.1002/cctc.201900210. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Materials scienceOxideIron oxide010402 general chemistry01 natural sciencesCatalysisCatalysislaw.inventionInorganic ChemistryMetalPropanechemistry.chemical_compoundlawOxidationCalcinationNanocastingPhysical and Theoretical Chemistry010405 organic chemistryOrganic ChemistryMicroporous materialMesoporous materials0104 chemical scienceschemistryChemical engineeringColloidal goldvisual_artvisual_art.visual_art_mediumGoldMesoporous material
researchProduct

Size-activity relationship of iridium particles supported on silica for the total oxidation of volatile organic compounds (VOCs)

2019

12 Figures, 2 Tables.-- Datos suplementarios disponibles en línea en la página web del editor.-- © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

General Chemical EngineeringTotal oxidationInorganic chemistryShort chain alkaneschemistry.chemical_element02 engineering and technologyIridium010402 general chemistry01 natural sciencesRedoxIndustrial and Manufacturing Engineeringlaw.inventionCatalysisMetalSize-activity relationshiplawEnvironmental ChemistryCalcinationIridiumVOCSilicaGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical scienceschemistryvisual_artvisual_art.visual_art_mediumParticle size0210 nano-technologyPlatinumPalladiumChemical Engineering Journal
researchProduct

Oxygen defects: The key parameter controlling the activity and selectivity of mesoporous copper-doped ceria for the total oxidation of naphthalene

2012

Mesoporous CeO2 modified by the addition of copper has shown high efficiency for the total oxidation of naphthalene. High activity and 100% selectivity to carbon dioxide throughout the whole range of temperatures studied were achieved for copper loadings of 3.6% and lower. The catalytic behaviour has been related to the concentration of surface oxygen defects. A clear correlation between the concentration of surface oxygen defects (determined by XPS and DRIFTS) and the catalytic performance has been identified. Catalytic activity increased as copper was incorporated into the ceria up to 3.6%. In this range of copper content the copper was incorporated into the cubic fluorite lattice of CeO2…

Materials scienceProcess Chemistry and TechnologyInorganic chemistrychemistry.chemical_elementOxygenCopperCatalysisCatalysischemistry.chemical_compoundX-ray photoelectron spectroscopychemistryCatalytic oxidationSelectivityMesoporous materialGeneral Environmental ScienceNaphthaleneApplied Catalysis B: Environmental
researchProduct

Au deposited on CeO2 prepared by a nanocasting route: A high activity catalyst for CO oxidation

2014

Abstract A set of catalysts comprised of gold on different CeO 2 supports has been prepared by a nanocasting route and characterized by several physicochemical techniques. These catalysts have been tested for CO oxidation and show outstanding catalytic activity. Higher calcination temperatures of the hard template, producing a poorly ordered silica template, have led to a higher amount of oxygen vacancies on the surface of CeO 2 . The presence of surface oxygen defects in the support combined with the deposition of Au nanoparticles ( ca. 3 nm) homogeneously dispersed on the CeO 2 support may explain the excellent behaviour for low temperature CO oxidation. Surprisingly, it has been observed…

Inorganic chemistryNanoparticleCatalytic combustionCatalysisCatalysislaw.inventionchemistry.chemical_compoundchemistryColloidal goldlawOxidation stateCalcinationPhysical and Theoretical ChemistryDispersion (chemistry)Carbon monoxideJournal of Catalysis
researchProduct

The prevalence of surface oxygen vacancies over the mobility of bulk oxygen in nanostructured ceria for the total toluene oxidation

2015

12 figures, 2 tables

MorphologyNanocubesMaterials scienceInorganic chemistryNanoparticlechemistry.chemical_elementOxygenHydrothermal circulationCatalysisCatalysisCrystalchemistry.chemical_compoundCeriaSurface oxygen vacanciesEnvironmental Science(all)General Environmental ScienceNanotubesProcess Chemistry and TechnologyTolueneToluene oxidationNanostructuresCrystal sizechemistryNanoparticlesNanorodNanorodsToluene
researchProduct

Glycerol selective oxidation to lactic acid over AuPt nanoparticles; Enhancing reaction selectivity and understanding by support modification

2020

2 Schemes, 3 Tables, 5 Figures.

Tartronic acidGlycerolDehydration010405 organic chemistryChemistryOrganic ChemistryPrimary alcohol010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesLactic acidCatalysisInorganic ChemistryReaction ratechemistry.chemical_compoundChemical engineeringAerobic oxidationLewis acids and basesNanocastingLactic AcidPhysical and Theoretical ChemistrySelectivityMesoporous material
researchProduct

Green synthesis of cavity-containing manganese oxides with superior catalytic performance in toluene oxidation

2019

10 Figuras.- 2 Tablas.- Datos suplementarios disponibles en línea en la página web del editor.-- © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

010405 organic chemistryChemistryStructural waterProcess Chemistry and TechnologyInorganic chemistryCationic polymerizationVOCs oxidationchemistry.chemical_elementNanoparticleManganeseCavities010402 general chemistry01 natural sciences7. Clean energyOxygenTolueneCatalysisHydrothermal circulationToluene oxidation0104 chemical sciencesCatalysischemistry.chemical_compoundManganese oxideToluene
researchProduct

Low temperature total oxidation of toluene by bimetallic Au–Ir catalysts

2017

9 Figuras.- 3 Tablas.- Información suplementaria disponible en la página web del editor

Inorganic chemistryTotal oxidationchemistry.chemical_elementSintering02 engineering and technology010402 general chemistryIridium01 natural sciencesOxygenCatalysisCatalysisMetalchemistry.chemical_compoundPropanePropaneIridiumBimetallic stripBimetallicVOCs021001 nanoscience & nanotechnologyToluene0104 chemical scienceschemistryvisual_artvisual_art.visual_art_mediumGold0210 nano-technologyToluene
researchProduct

Influence of the preparation method on the activity of ceria zirconia mixed oxides for naphthalene total oxidation

2013

Cerium/zirconium mixed oxides, with different Ce/Zr ratios, have been synthesised by a co-precipitation method using two different precipitating agents (sodium carbonate and urea) and tested for the total oxidation of naphthalene. Catalysts were characterized by N2 adsorption, XRD, Raman, TPR, XPS and DRIFTS. Ceria prepared by carbonate precipitation had low activity and this is likely to be related to the high concentration of residual surface carbonate that covers catalytic sites and inhibits reaction. For carbonate precipitation, increasing the Zr content to 1% resulted in a significant increase of activity, which is related to the decrease of surface carbonate. Increasing the Zr content…

ZirconiumPrecipitation (chemistry)Process Chemistry and TechnologyInorganic chemistrychemistry.chemical_elementCatalysisCatalysischemistry.chemical_compoundCeriumAdsorptionchemistryCatalytic oxidationCarbonateSodium carbonateGeneral Environmental ScienceApplied Catalysis B: Environmental
researchProduct

Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol.

2009

Abstract During the catalytic combustion of naphthalene, compounds other than CO 2 are often obtained. These products, as polymerized polycyclic aromatic hydrocarbons, oxygenated aromatic compounds and benzene derivate compounds, are usually more toxic than naphthalene. At the present work it is shown a nanocrystalline cerium oxide prepared by a combustion method employing a proper ethylene glycol concentration that exhibits very high activity in the decomposition of naphthalene in the presence of air and, most importantly, a selectivity value towards CO 2 of 100% for any range of conversions and/or temperatures used. In addition, it has been demonstrated that the amount of ethylene glycol …

Cerium oxideEthylene GlycolEnvironmental EngineeringHealth Toxicology and MutagenesisInorganic chemistryCatalytic combustionNaphthalenesCatalysisCatalysischemistry.chemical_compoundX-Ray DiffractionEnvironmental ChemistryBenzeneWaste Management and DisposalNaphthalenechemistry.chemical_classificationAir PollutantsAirTemperatureCarbon DioxidePollutionOxygenHydrocarbonchemistryMicroscopy Electron ScanningNanoparticlesGasesSelectivityCrystallizationEthylene glycolJournal of hazardous materials
researchProduct

Insights into the production of upgraded biofuels using Mg-loaded mesoporous ZSM-5 zeolites

2020

9 figures, 6 tables.-- Supplementary information available.-- https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html

Bio-oil upgrading010405 organic chemistryDecarboxylationChemistryOrganic ChemistryDecarbonylation010402 general chemistry01 natural sciencesMesoporous ZSM-5 zeolitesCatalysis0104 chemical sciencesCatalysisInorganic ChemistryAromaticsDe-oxygenationOrganic chemistryAldol condensationMagnesiumPhysical and Theoretical ChemistryZSM-5ZeoliteMesoporous materialDeoxygenation
researchProduct