0000000000142215
AUTHOR
Michael Akam
Six3 demarcates the anterior-most developing brain region in bilaterian animals
Abstract Background The heads of annelids (earthworms, polychaetes, and others) and arthropods (insects, myriapods, spiders, and others) and the arthropod-related onychophorans (velvet worms) show similar brain architecture and for this reason have long been considered homologous. However, this view is challenged by the 'new phylogeny' placing arthropods and annelids into distinct superphyla, Ecdysozoa and Lophotrochozoa, together with many other phyla lacking elaborate heads or brains. To compare the organisation of annelid and arthropod heads and brains at the molecular level, we investigated head regionalisation genes in various groups. Regionalisation genes subdivide developing animals …
Oligonucleotide probes detect splicing variants insituinDrosophilaembryos
We describe a method for the in situ detection of specific splicing variants. The method is based on the use of antisense oligonucleotides designed to span splice junctions labelled with digoxigenin by terminal transferase tailing. We find that the spatial patterns of Ubx splicing variants Ia and IIa are similar in early embryos, but differ in late embryos. Variant IVa is only detected in the CNS (ps6) at stages 16 and 17. We also present evidence indicating that the first splicing event is cotranscriptional.