First-Principles Evaluation of the Morphology of WS2 Nanotubes for Application as Visible-Light-Driven Water-Splitting Photocatalysts
This study was supported by the EC ERA.Net RUS Plus project No. 237 WATERSPLIT as well as Russian Basic Research Foundation No. 16-53-76019. S.K. and E.S. furthermore gratefully acknowledge computing time granted by the Center for Computational Sciences and Simulation (CCSS) of the Universitaẗ Duisburg-Essen and the supercomputer magnitUDE (DFG grants INST 20876/209-1 FUGG, INST 20876/243-1 FUGG) provided by the Zentrum für Informations-und Mediendienste (ZIM). E.S. is also grateful for support by the Cluster of Excellence RESOLV (EXC1069) funded by the Deutsche Forschungsgemeinschaft.
Formation of linear Ni nanochains inside carbon nanotubes: Prediction from density functional theory
Abstract First principles calculations have been performed to investigate the ground state properties of monoperiodic single-walled carbon nanotubes (CNTs) containing nanochain of aligned Ni atoms inside. Using the PBE exchange-correlation functional ( E xc ) within the framework of density functional theory (DFT) we predict the clusterization of Ni filaments in ( n ,0) CNTs for n ⩾ 9 and for ( n , n ) CNTs for n ⩾ 6. The variations in formation energies obtained for equilibrium defective nanostructures allow us to predict the most stable Ni@CNT compositions. Finally, the electronic charge redistribution has been calculated in order to explore intermolecular properties leading to stronger…
First principles modeling of 3d-metal doped three-layer fluorite-structured TiO2 (4,4) nanotube to be used for photocatalytic hydrogen production
This study has been supported by the EC ERA.Net RUS Plus project No. 237 WATERSPLIT, Russian Basic Research Foundation No. 16-53-76019, and additionally by the IMIS2 Program (Latvia). The authors are also indebted to R. A. Evarestov and O. Lisovski for stimulating discussions as well as to A. Chesnokov for technical assistance.
Time-Dependent Density Functional Theory Calculations of N- and S-Doped TiO2 Nanotube for Water-Splitting Applications
This research was funded by the Latvian Council of Science grant LZP-2018/2-0083. Institute of Solid State Physics, University of Latvia, as the Center of Excellence, has received funding from the European Union?s Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2.
Comparative Theoretical Analysis of BN Nanotubes Doped with Al, P, Ga, As, In, and Sb
SUMMARY AND CONCLUDING REMARKS We have performed large-scale first-principles calculations ofthe electronic structure of (5,5) boron nitride nanotubescontaining the following substitutional impurity atoms: Al, P,Ga, As, In, and Sb. Calculations have been performed using thetwo methods: (i) linear combination of atomic orbitals(LCAO) with the atomic-centered Gaussian-type functions asa basis set and (ii) linearized augmented cylindrical wave(LACW) accompanied with the local density functional andmuffin-tin approximations for the electronic potential. In arelatively good qualitative agreement, both methods predict lowformation energies and, thus, relative stability of point defectsthat are assoc…
Comparative analysis of the electronic structures of mono- and bi-atomic chains of IV, III–V and II–VI group elements calculated using the DFT LCAO and LACW methods
Using the first principle non-relativistic linear combination of atomic orbitals (LCAO) and relativistic linearized augmented cylindrical wave (LACW) methods, the band structure of the covalent and partially ionic ANB8−N single atom width chain is calculated. Both the LCAO and LACW methods show that the chains of C, Si, Ge, Sn, and Pb are metallic. However, there is a great difference between the relativistic and non-relativistic band structures. The π bands crossing the Fermi level are orbitally doubly degenerate in the non-relativistic model. The relativistic LACW calculations demonstrate that the spin and orbital motion of electrons are coupled, thereby splitting the π bands. The spin–or…