0000000000142582

AUTHOR

Matteo Incerti

Synthesis and Structure-Activity Relationships of Amino Acid Conjugates of Cholanic Acid as Antagonists of the EphA2 Receptor

The Eph–ephrin system plays a critical role in tumor growth and vascular functions during carcinogenesis. We had previously identified cholanic acid as a competitive and reversible EphA2 antagonist able to disrupt EphA2-ephrinA1 interaction and to inhibit EphA2 activation in prostate cancer cells. Herein, we report the synthesis and biological evaluation of a set of cholanic acid derivatives obtained by conjugation of its carboxyl group with a panel of naturally occurring amino acids with the aim to improve EphA2 receptor inhibition. Structure-activity relationships indicate that conjugation of cholanic acid with linear amino acids of small size leads to effective EphA2 antagonists whereas …

research product

Δ5-Cholenoyl-amino acids as selective and orally available antagonists of the Epheephrin system

The Eph receptor-ephrin system is an emerging target for the development of novel anti-angiogenic therapies. Research programs aimed at developing small-molecule antagonists of the Eph receptors are still in their initial stage as available compounds suffer from pharmacological drawbacks, limiting their application in vitro and in vivo. In the present work, we report the design, synthesis and evaluation of structure-activity relationships of a class of Δ(5)-cholenoyl-amino acid conjugates as Eph-ephrin antagonists. As a major achievement of our exploration, we identified N-(3β-hydroxy-Δ(5)-cholen-24-oyl)-L-tryptophan (UniPR1331) as the first small molecule antagonist of the Eph-ephrin syste…

research product

Comparative analysis of virtual screening approaches in the search for novel EphA2 receptor antagonists

The EphA2 receptor and its ephrin-A1 ligand form a key cell communication system, which has been found overexpressed in many cancer types and involved in tumor growth. Recent medicinal chemistry efforts have identified bile acid derivatives as low micromolar binders of the EphA2 receptor. However, these compounds suffer from poor physicochemical properties, hampering their use in vivo. The identification of compounds able to disrupt the EphA2-ephrin-A1 complex lacking the bile acid scaffold may lead to new pharmacological tools suitable for in vivo studies. To identify the most promising virtual screening (VS) protocol aimed at finding novel EphA2 antagonists, we investigated the ability of…

research product