6533b7d1fe1ef96bd125c30d
RESEARCH PRODUCT
Synthesis and Structure-Activity Relationships of Amino Acid Conjugates of Cholanic Acid as Antagonists of the EphA2 Receptor
Matteo IncertiElisabetta BarocelliSilvia RivaraCarmine GiorgioMassimiliano TognoliniSimonetta RussoIftiin Hassan-mohamedDaniele PalaAlessio LodolaAntimo GioielloFrancesca De FrancoPaola ViciniMarco MorRiccardo Castellisubject
EphA2 antagonistsStereochemistryStructure-activity relationship studiesPharmaceutical Sciencemedicine.disease_causeArticleProtein Structure SecondaryAnalytical Chemistrylcsh:QD241-441Inhibitory Concentration 50Structure-Activity Relationshipchemistry.chemical_compoundamino acid conjugateslcsh:Organic chemistryEphA2 anatgonistscholanic acid; amino acid conjugates; EphA2 antagonists; structure-activity relationshipsCell Line TumorDrug DiscoveryAromatic amino acidsmedicineHumansPhosphorylationPhysical and Theoretical ChemistryReceptorbile acids; EphA2 anatgonists; Structure-activity relationship studies; amino acid conjugatesbile acidschemistry.chemical_classificationBinding SitesReceptor EphA1Receptor EphA2structure-activity relationshipsOrganic ChemistryAntagonistCholic AcidsHydrogen BondingEPH receptor A2Amino acidMolecular Docking SimulationCholanic acidcholanic acidchemistryBiochemistryChemistry (miscellaneous)Molecular MedicineCarcinogenesisProtein Processing Post-TranslationalProtein BindingConjugatedescription
The Eph–ephrin system plays a critical role in tumor growth and vascular functions during carcinogenesis. We had previously identified cholanic acid as a competitive and reversible EphA2 antagonist able to disrupt EphA2-ephrinA1 interaction and to inhibit EphA2 activation in prostate cancer cells. Herein, we report the synthesis and biological evaluation of a set of cholanic acid derivatives obtained by conjugation of its carboxyl group with a panel of naturally occurring amino acids with the aim to improve EphA2 receptor inhibition. Structure-activity relationships indicate that conjugation of cholanic acid with linear amino acids of small size leads to effective EphA2 antagonists whereas the introduction of aromatic amino acids reduces the potency in displacement studies. The b-alanine derivative 4 was able to disrupt EphA2-ephrinA1 interaction in the micromolar range and to dose-dependently inhibit EphA2 activation on PC3 cells. These findings may help the design of novel EphA2 antagonists active on cancer cell lines.
year | journal | country | edition | language |
---|---|---|---|---|
2013-10-01 | Molecules |